概述
掌握大模型技术,可应对复杂的数据分析任务,提升研究与工作的解决能力。学习大模型具备处理复杂性、具有泛化能力与灵活性,对求职者有显著提升。本教程从基础概念出发,包括大模型的优势与应用、基础知识学习建议、入门基础教程,以及分布式训练、有监督微调与AGI学习包等内容。通过推荐的学习资源与实战项目资料,引导读者深入学习并实践大模型技术,开启AI大模型之旅。
大模型入门教程:从零基础到精通,你的AI学习指南
一. 大模型基础概念
1. 为什么学习大模型?
优势与应用:大模型具备处理复杂问题、快速学习和适应新任务的能力,广泛应用于自然语言处理、计算机视觉、智能对话等领域。掌握大模型技术可以帮助你应对更复杂的数据分析任务,提升研究或工作中解决实际问题的能力。
就业前景:随着人工智能的快速发展,掌握大模型技术成为许多技术岗位的必备技能,极大提升了求职竞争力。
2. 大模型的优势
- 处理复杂性:能够处理大规模数据,解决复杂的预测和决策问题。
- 泛化能力:通过预训练,大模型能够应用于多种任务,仅需少量的数据进行微调。
- 灵活性:易于与不同架构结合,支持跨平台操作,有利于快速迭代和创新应用。
3. 大模型学习建议
- 基础知识:学习数学基础(线性代数、概率统计)、编程基础(Python)、基本的深度学习原理。
- 实践操作:通过动手实践,运用Python和深度学习框架如TensorFlow、PyTorch,进行模型训练与微调。
- 持续学习:关注最新研究动态,参与社区讨论,提升自己的技术栈。
二. 大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起
第2章 大语言模型基础
Transformer模型:深入学习Transformer的核心机制、结构设计。
GPT模型:了解无监督预训练语言模型的机制,包括自回归语言建模。
LLaMA结构:探索大语言模型的最新发展,突出其在结构优化和性能提升方面的创新。
第3章 大语言模型应用
- 数据来源与处理:介绍数据集的选取与预处理方法。
- 模型评估:学习如何评估模型性能,理解关键指标与评估方法。
三. 实践操作
分布式训练
策略与架构:理解数据并行、模型并行、混合并行等策略,以及高性能计算集群的构成。
DeepSpeed实践:通过开源工具DeepSpeed实现高效的大模型分布式训练。
有监督微调
提示学习:了解如何使用提示向量改进模型生成的文本质量。
模型上下文窗口扩展:通过插值法等技术提升模型处理长文本的能力。
指令数据构建:学习如何从指令入手构建高质量的数据集。
四. 大模型AGI学习包
学习资源推荐
- 在线课程:推荐慕课网等平台的AI大模型相关课程。
- 社区参与:加入GitHub、Stack Overflow等社区,参与讨论与项目合作。
实战项目资料
- 比赛资料:参与AI挑战赛,积累实战经验。
- 面试题合集:准备常见的AI大模型面试问题,强化实战能力。
五. 结束语
持续学习和实践是掌握大模型技术的关键。AI领域的技术更新迅速,保持学习的热情和对新知识的渴望,将帮助你在这个快速发展的领域中保持竞争力。利用免费资源和平台,不断挑战自我,将理论知识转化为实际能力,开启你的AI大模型之旅。
资源获取渠道
- 免费领取《人工智能\大模型入门学习大礼包》,内含成长路线图、学习规划、视频教程、实战资料、必读书单和面试题合集等丰富内容。扫描下方二维码免费领取,开始你的AI大模型学习之旅。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。