相信大家都碰到过手机存储报警的情况,平常也没咋用,突然就发现空间不够了,最后发现是微信占用了很多的空间。
仔细想想也正常,每天那么多亲戚、朋友甚至是同事都在上面交流。但这些信息很少被回看,但又不会轻易去删除,就怕万一后续有用呢。
如果 AI Chatbot 可以帮助我们总结分析,那不就变废为宝了吗? 你想想大家一通讨论,你也不用去爬楼,直接让 AI 帮你总结下都讨论了啥,那这效率不是起飞了?
最后老王就看到了一款这样的工具,名为 chatlog,试用效果如下图所示。
把 AI 交流群的信息一下子就总结出来了,再也不用一条条看了,太爽了吧也。
如何获取
ChatLog 官网提供了两种方式安装,一种是预编译版,说白了给你预处理好了,下载解压无脑就可以用;另外一种就是下载源码,需要自己加工处理,非程序员就不用考虑了。
预编译版本地址:https://github.com/sjzar/chatlog/releases,正常 windows 电脑选下图红框里的就行,其他照着自己电脑的配置选对应的下载。
下载完成后,解压缩,就会看到 chatlog.exe 文件,直接双击就能打开。
红框中就是相关的命令和说明,使用 ↑/↓
键选择菜单项,按 Enter
确认选择,按 Esc
返回,按 Ctrl+C
退出。
操作教程
如何才能进行聊天信息分析呐,一起来看看接下来的步骤。
第一步 解密数据
选择「解密数据」菜单项,等待一会儿就显示完成了。
第二步 开启 HTTP 服务
选择「启动 HTTP 服务」 菜单项,开启服务。
红框中的「127.0.0.1:5030」即为 HTTP Server 的地址,通过 API 就可以访问数据。
第三步 访问数据
通过 HTTP API 或 MCP 集成 方式就可以访问聊天记录,API 方式的具体参数如下:
聊天记录查询接口:
GET /api/v1/chatlog?time=2023-01-01&talker=wxid_xxx
参数说明:
time: 时间范围,格式为 YYYY-MM-DD 或 YYYY-MM-DD~YYYY-MM-DD
talker: 聊天对象标识(支持 wxid、群聊 ID、备注名、昵称等)
limit: 返回记录数量
offset: 分页偏移量
format: 输出格式,支持 json、csv 或纯文本
---
其他 API 接口:
联系人列表:GET /api/v1/contact
群聊列表:GET /api/v1/chatroom
会话列表:GET /api/v1/session
比如我想看下我的 AI 交流群一个月前我都发了什么,利用联系人列表接口,就可以获取到交流群的群聊 ID。
再查询聊天记录即可,就可以获取到时间范围中,针对该群聊的所有信息。
看到这里好像和 AI 没啥大关系。是的,这一步只是方便外界读取信息,上面的 API 方式相对更偏传统互联网方式一些。
Chatlog 支持 MCP SSE 协议,该协议结合了 Server-Sent Events(SSE)和 HTTP POST 技术,形成双向通信机制,是 MCP 协议两大传输标准之一,另一个为本地 stdio 模式。
cherry studio 即可借由 MCP 接入,网址:https://cherry-ai.com/,下载后安装即可。
打开软件,在「设置」-「MCP 服务器」-「添加服务器」。
输入名称为 chatlog,选择类型为「服务器发送事件(sse)」,填写 URL 为 http://localhost:5030/sse
,点击「保存」,注意:点击保存前不要先点击左侧的开启按钮。
配置好后,只需要在对话窗口中「MCP 服务器」中选择上面配置好的 chatlog 即可。
来测试下,可以看到已经能获取到相关数据了。
这里我使用的是硅基流动的 API,通过这个链接:https://cloud.siliconflow.cn/i/bDPwfO9J,新用户就能获取到 2kw tokens,平时用用就够了。
总结
互联网时代最大的问题就是信息过载,而 AI 出现之后,情况愈演愈烈。
每天有追不完的新闻,看不完的群消息。
这下好了,利用 AI 一下子就能提升信息密度,要是加入一些信息质量高的群聊,那岂不是写个报告轻轻松松,微信直接成为了高质量的知识库。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】