主要内容
本研报探讨了企业在采用生成式人工智能(Generative AI)过程中面临的挑战和策略,旨在帮助企业打破信息孤岛、解决内部权力斗争,并激活支持AI转型的冠军,从而释放AI在工作中的变革潜力。核心观点如下:
-
生成式AI的广泛应用和乐观态度
-
面临的挑战和问题
-
克服挑战的策略
-
支持性技术合作伙伴的特征
-
实现AI转型的路径
1. 生成式AI的广泛应用和乐观态度
- 广泛的AI乐观态度
88%的员工和97%的高管表示他们从生成式AI中受益,并且正在利用这些工具进行各种用例。
- 生成式AI的应用场景
高管比员工更可能使用生成式AI进行多种用途,60%的员工和89%的高管表示他们的至少四分之一的工作已经受到生成式AI的影响或增强。
2. 面临的挑战和问题
- 应用挑战
尽管生成式AI工具明显有益,但72%的高管表示他们的公司在AI应用过程中面临至少一个挑战,42%认为这个过程正在撕裂公司。
- 权力斗争
组织在内部一致性方面特别挣扎,71%的高管表示生成式AI应用正在被孤立创建,约三分之二的高管表示AI应用过程在公司内部造成了紧张或分裂。
- 员工与雇主的脱节
员工和高管在AI实施方面看法不一,只有45%的员工认为他们的公司在过去12个月中成功实施和使用了生成式AI,而75%的高管持相同看法。
- 员工抵制行为
41%的千禧一代和Z世代员工承认他们正在破坏公司的AI战略,例如拒绝使用AI工具或输出。
- 低质量的AI工具
员工对雇主提供的工具非常不满意,35%的员工自掏腰包购买生成式AI工具,这不仅增加了员工的成本负担,还可能为组织带来安全风险。
- 投资回报差距
在成功采用生成式AI方面,投资最多的公司与投资最少的公司之间存在40个百分点的差距,进行大规模战略性投资的公司表现优于同行。
3. 克服挑战的策略
- 制定正式的投资计划
没有正式AI战略的公司中,只有37%的高管表示他们在采用和实施AI方面非常成功,而有战略的公司这一比例为80%。
- 培养AI冠军
77%的员工认为自己要么是AI冠军,要么有潜力成为AI冠军,这些员工正在采取关键步骤支持整个组织的更好采用和实施过程。
- 选择合适的技术合作伙伴
98%的高管认为生成式AI供应商应在塑造工作中的AI愿景方面发挥作用,其中70%的高管认为这一角色应该是“重要的”。
4. 支持性技术合作伙伴的特征
- 定制AI工具
53%的高管表示供应商在优先考虑业务需求方面让他们失望,他们希望供应商能与他们密切合作,识别高价值应用并确定潜在的验证机会。
- 帮助公司准备
52%的受访者表示供应商应在定义角色和责任、收集必要数据和解决安全考虑方面做更多工作,同样比例的高管希望供应商提供培训或认证计划。
- 提供试点阶段
50%的高管希望供应商在组织文化接受AI方面提供更多支持,经验丰富的供应商知道提供试点阶段可以让员工尝试新工具并测试其功能,确保平稳过渡。
5. 实现AI转型的路径
- 识别下一步
企业应通过AI准备情况测验确定其在实施、集成和利用AI方面的准备情况,并安排演示。
本研报详细分析了企业在采用生成式AI过程中面临的挑战和策略,强调了制定正式的投资计划、培养AI Champion和选择合适的技术合作伙伴的重要性。通过克服这些挑战,企业可以实现AI转型,释放AI在工作中的变革潜力。
关键问题及回答
问题1:生成式AI工具在哪些具体用例中为员工和高管带来了好处?
生成式AI工具在多个具体用例中为员工和高管带来了好处。例如,高管利用生成式AI进行数据驱动的决策、市场趋势分析、时间管理和效率提升。员工则通过生成式AI工具提高了工作效率,减少了行政任务的时间,有更多时间专注于创新和客户关系管理。此外,生成式AI还在客户服务、销售和营销等领域发挥了重要作用,提升了客户满意度和业务成果。
问题2:为什么千禧一代和Z世代员工会破坏公司的AI战略?
千禧一代和Z世代员工破坏公司AI战略的原因多种多样。一些员工担心AI会取代他们的职位或减少他们的创造力,因此故意不配合AI工具的使用。此外,他们对AI工具的可靠性和质量表示担忧,认为这些工具无法提供预期的结果。这些因素反映了员工对AI变化的恐惧和对现有工作安全性的担忧,需要通过更好的沟通和培训来解决。
问题3:企业在选择生成式AI供应商时最看重哪些因素?
企业在选择生成式AI供应商时最看重的因素包括安全性/数据治理(80%的高管认为这一点非常重要)、用户友好性(57%)、集成速度(57%)和成本效益(54%)。此外,高管们还强调供应商应提供高度定制化的工具(53%)、帮助公司进行准备(52%)、提供试点阶段(50%)以及能够衡量和沟通AI工具的影响(48%)。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓