前面已经介绍了很多Dify的内容,也有很多朋友问了我很多Dify平台的内容。但是在工作中,很多客户提出了一些内部知识库管理问题,这部分的内容,明显在Dify这里是一个短板。那这里接触了RAGflow,在文档管理方面RAGflow确实有自己的优势。
RAGFlow 是一款开源检索增强生成(RAG, Retrieval-Augmented Generation)引擎,致力于通过深度文档理解技术,帮助用户构建高准确性、高可信度的智能知识库。无论是企业级应用还是个人开发者项目,RAGFlow 都能提供高效、强大的RAG解决方案,使大语言模型(LLM)能够精准解析复杂格式文档,生成可靠回答,并附带清晰可追溯的引用来源,从而提升知识检索与生成的可信度和可用性。
那从今天开始,带来一系列的有关RAGflow的介绍,先从安装开始。(这
里面的坑,也是不少啊)
01
代码下载
RAGflow地址:https://github.com/infiniflow/ragflow
打开地址后,现在代码到本地。
02
管理Docker服务
下载后,进行解压,然后进入到docker页面。
执行:docker compose -f docker-compose.yml up -d。根据docker-compose.yml配置文件进行执行。
显示80端口被占用了。Docker的服务,也没有启动。
我们在修改端口,改为86。然后再启动服务。
在重启一遍,发现443端口,也被占用了。在修改443的接口。
那这次没有问题了。
03
查看状态
启动状态现在OK了。
查看日志也没有问题。
04
痛苦的开始了
从.env文件中,我们看到原来默认加载的是slim版本RAGflow。
slim仅包含运行 RAGFlow 必需的组件和依赖。slim是没有embedding模型的。
那只能在重新开始了。
这个时候拉取代码的时候,发现在ragflow的大小是7.54G,但是就是到7.539G就不动了,等了好久都不行,来来回回弄了好几次都不行。白白的浪费时间了。
那后来有又把下载源改为国内的源。swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/ragflow:v0.18.0
这里倒是下载完成了,但是docker服务还是启动不了。
这时候我想要不在重新来,重头开始弄吧。
05
着手解决问题
先把docker停用了,docker-compose down -v,删除所有资源。
查找所有的镜像。docker images | findstr "ragflow"
这个时候发现了,竟然有3个,原来不知道已经下了这么多的镜像了。这个可能就是起不来的原因了。有3个镜像,系统肯定认为是冲突了。
那就把不需要的先删除了。
docker rmi infiniflow/ragflow:v0.18.0-slim
docker rmi swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/ragflow:v0.18.0
在重新执行一次docker compose -f docker-compose.yml up -d。
OK,通过种种的尝试吧,终于搞定!
访问的时候,记着前面改过端口了,这里访问的时候,要记着改啊。
现在就可以注册使用了!后面继续针对配置和各种应用在进行详细的介绍!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓