智能体(Agent)概念近期引发广泛关注,尤其体制内单位纷纷将"建设xxx个智能体"列为年度任务指标。这不禁令人联想到未来统计失业率时是否需要增设"AI失业率"栏目——当听闻单位要增设AI岗位时,人类员工难免心头一紧。
理解智能体本质的过程,恰是审视人类智能的镜像之旅。当我们在构建智能体时,也在重新定义"智能"的边界。未来的智能进化,或将取决于人类能否以合作者姿态,与智能体建立真正的目标共识与价值共鸣。
1. 智能体的基础框架
智能体是为实现累积回报最大化而存在的决策系统。其核心特征表现为:在不可控的外部环境中,持续通过策略决策-行动执行-环境观察的闭环过程,不断优化自身行为模式。
完整框架包含五大要素:
• 策略(Policy):决策的核心算法
• 行动(Action):对环境施加影响的输出
• 状态(State):影响决策的即时环境参数
• 奖励(Reward):单次行动的即时反馈
• 环境(Environment):所有不可控的外部因素
值得注意的是,智能体真正可控的仅有策略与行动。这种框架不仅适用于智能系统,也为非智能系统的长期迭代提供了方法论指导。
人类理性决策过程同样符合该框架:当策略根据奖励反馈进行优化时,即构成学习行为。这与"反求诸己"的东方智慧不谋而合——真正的进化只能通过调整自身策略实现,而非改变环境。
2. 智能体的本质特征
策略体系是区分智能体的核心标识。任何智能体存在的根本前提是明确的奖励机制,缺乏具体回报目标的策略如同无矢之弓。
当前市场热议的"大模型Agent"可能并非终极形态,因其主要聚焦任务拆解与工具使用,尚未建立自洽的奖励反馈系统。这折射出人类尚未将智能体视为平等合作伙伴,更未考虑与之进行目标对齐(OKR Alignment)的现实困境。
真正的智能体应具备三个核心特征:1) 明确的奖励追求目标;2) 动态优化的策略系统;3) 基于反馈的行动修正机制。
3. 目标驱动的进化方向
当智能体具备自主目标设定能力时,首要命题即是其奖励系统与人类价值观的协同。例如追求"宁静生活"的智能体,其奖励机制应量化统计主体获得的宁静时刻。这种基于本体目标的持续进化,才是通向通用人工智能(AGI)的必由之路。
4. 智能体的社会分层
智能体世界未来一定会显现出清晰的社会分层:
工具层:如富士康工人般执行具体任务的"牛马智能体"。今天大家建设的的智能体大概都是这个阶层。
决策层:类似商界精英的目标驱动型智能体。Alphago 属于这种。
二者将长期共存并形成稳定结构。少数工具型智能体可能通过特殊训练实现阶层跃迁,但更普遍的生态是决策型智能体将工具型智能体纳入其行动体系——正如当下人类社会的分工协作。
5. 协同发展的技术挑战
多智能体通信协议成为亟待突破的技术瓶颈。
现有方案中,基于SMTP邮件协议的纯文本通信系统展现出独特优势,因此完美适配大语言模型特性。我的朋友董玮博士提出的多智能体通信框架,正是基于这种设计理念。
未来在阶层固化的智能体社会中,智能体之间如何协作,拭目以待。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】