1.AI大模型的基本内涵与主要特征
AI大模型指通过海量数据训练出的具有庞大参数规模(通常从数十亿到数千亿)的深度学习模型,是人工智能领域的前沿技术[14]。这些模型采用自监督学习方式在大规模未标注数据上实施预训练从而学习通用知识表示[15]。当前,产业实践中的AI大模型主要分为通用大模型和垂直大模型两类。由文献梳理可知,现有对AI大模型研究的视角包括:其一,通用性,即AI大模型如何跨越不同知识域[16],在各种复杂任务中展现出强大的适应性和解决问题的能力[17]。其二,场景适用性,即探究AI大模型如何针对具体行业或应用需求进行优化,以及在实际部署中的效果评估[19]。其三,泛化性,即考察大模型的知识迁移能力[20],以及在低资源或零样本学习等场景下的泛化表现[21]。由此可见,各方尚未对AI大模型的特征形成统一的界定。基于AI大模型的基本内涵和现有文献资料,文章将AI大模型的特征归纳为:一是规模庞大,体现在其参数量从早期BERT的1.1亿跃升至GPT-3的1750亿。二是跨域泛化性,其无需针对特定任务重新训练即可处理文本、图像、代码等多种任务。三是强交互性,能理解复杂对话并通过上下文推理生成高质量回答。
2.工业新质生产力的基本内涵与特征
生产力概念的理论诠释呈现动态演进特征。生产力这一概念的提出始于弗朗斯瓦·魁奈,其认为“土地是财富的唯一源泉”[20],而后马克思对生产力四大构成要素(科学技术、劳动力、劳动资料及劳动对象)进行了系统阐述。现代社会生产力内涵虽已超越马克思所处时代大工业体系的范畴,但其构成要素及系统组合方法论仍具重要启示意义。新质生产力通过优化要素组合、提升劳动者素质、提高技术含量和拓展劳动对象范围,进一步深化了马克思劳动过程理论[22]。
工业新质生产力,强调生产要素的集成和优化配置,需更适应工业场景的复杂性和动态性。工业新质生产力的特征有以下几点:一是劳动者的协同,工人与AI大模型驱动的工业机器人协同工作,实现了人机交互的新模式。二是劳动资料的智能化配置,工业大模型、工业互联网和智能装备的应用使劳动资料实现自我优化和智能调度,优化生产流程并提高了资源利用率。三是劳动对象的创新融合,劳动对象通过与新型材料的深度融合为生产过程提供了精准的指导,助力新型材料的开发和应用,实现价值最大化。四是生产要素的整体优化,数字化平台实现从设计到销售的全流程管理促进生产要素协调与系统优化,推动形成高效的工业新质生产力体系。具体如图1所示。
3.新兴技术与工业新质生产力的互动演进过程
工业生产力从18世纪60年代至今经历了手工、机械、电气、信息到数字智能的演进历程[23],生产模式逐步从人力主导转向智能制造为核心的高度自动化,其核心驱动力也由“经验积累”转向“人机协同”。这一演进过程可分为五个主要阶段(见图2):第一,生产力0.0阶段(前工业化时代,1760年前),以人力为主导,依靠原始工具进行分散化个体生产,生产知识主要通过经验积累传承。第二,生产力1.0阶段(第一次工业革命时期,1760—1840年),以蒸汽动力为核心,实现规模化工厂生产,机械设备替代传统手工工具。第三,生产力2.0阶段(第二次工业革命时期,1840—1950年),电力和内燃机推动机械化程度提升,确立规模化和标准化生产模式。第四,生产力3.0阶段(信息革命时代,1950—2010年):自动化技术扩展至简单脑力劳动领域,优化了生产流程和管理模式。第五,生产力4.0阶段(智能化时代,2010年后),当前AI大模型作为核心技术之一,通过数据处理、分析和预测能力赋能工业新质生产力,推动生产向智能化、网络化、协同化发展,形成人机协同的智能化新型生产关系。
三、AI大模型赋能工业新质生产力的内在逻辑
1.AI大模型赋能工业新质生产力的典型案例
基于新兴技术与工业新质生产力的互动演进过程发现,当前发展呈现“人机交互”特征,AI大模型作为关键技术重塑生产方式。为厘清AI大模型赋能工业新质生产力的内在逻辑,文章通过实地调研华为、中国神华、科大讯飞等代表性企业,并结合海尔集团、上海建工四建集团等企业的开源信息,从生产力四要素理论框架出发(见图3),归纳出AI大模型赋能工业新质生产力的四个特征:其一,在劳动主体层面,人机共生型劳动力形成。AI大模型提升工业机器人的环境适应能力,促进劳动者技能升级,实现人机协作优化生产。其二,在劳动资料层面,设备自动化整体升级。工业AI大模型培育了跨领域知识整合和问题解决能力,使企业能够更有效地分析和预测生产过程中的复杂数据,优化资源配置与设备利用,降低生产成本,提高生产效率。其三,在劳动对象层面,AI大模型推动了工业数据驱动与个性化定制的发展。不仅扩展了工业生产的边界,更创新了生产方式。AI大模型基于工业数据实时分析,企业实现了精准需求预测和个性化生产。其四,在生产关系层面,工作模式和组织架构重构。AI大模型的应用促进企业重新设计工作流程和组织架构,推动管理体系向数字化、网络化转型,提升工作灵活性。
2.AI大模型赋能工业新质生产力的实践场景
基于AI大模型赋能工业新质生产力的实践场景分析,其影响可以从价值链角度分为三个主要赋能阶段,包含9个关键赋能场景如图4所示。第一阶段为前端价值创造,包括:一是研发设计,AI大模型提升了企业创新效率和设计质量。如华为盘古矿山大模型整合煤炭行业数据,提高了勘测设计精确度。二是经营管理,主要体现为定制化的管理软件服务。如太阳石矿山大模型实现矿山数据交互及空间重建。三是决策支持,主要用于风险预测和决策优化。如“胜小利”大模型提升了油气资源勘探精度,优化生产参数。第二阶段为中端价值实现,包括:一是原材料采购,AI大模型一方面可以综合分析供应商的历史表现;另一方面可以通过分析市场趋势和历史数据,更准确预测原材料需求和价格波动。二是生产制造,AI大模型可以实时监控并调整生产参数。如卡奥斯工业大模型能够对生产设备进行定制和优化。三是仓储物流,AI大模型可以更精准优化库存预测和物流路线。如华为盘古矿山大模型可以实时分析矿区图像数据,生成远程操作方案,提高物流效率。第三阶段为后端价值实现阶段,包括:一是销售经营,能够构建精准客户画像,实现个性化营销,如“胜小利”大模型制定的精准销售策略。二是产品服务,AI大模型能够预测设备故障,提供智能支持,如羚羊大模型提供的个性化深度预测功能。三是回收再利用,AI大模型能够优化再制造效率,实现全生命周期管理,如Construction-GPT(PRO版)能够优化建筑设计和材料选择。
3.AI大模型赋能工业新质生产力的内在逻辑
工业新质生产力作为工业领域先进生产力,以技术创新为驱动,以质量和价值提升为导向,体现为生产方式的智能化、数字化转变。基于工业全链条视角和9个赋能场景,AI大模型通过全面赋能生产力四要素,具体内生逻辑体现如图5所示:第一,在劳动主体层面,AI大模型通过知识融合与创新能力提升增强了研发设计前期的创造力;通过智能操作与决策支持提高了生产制造的效率和精准度;利用预测分析与协同优化改进了供应链管理;以增强洞察力和个性化服务能力革新了市场营销模式。第二,在劳动资料层面,AI大模型促进了智能设计工具与仿真系统的应用;推动了研发设计的数字化融合转型。在生产制造阶段实现了标准化设备与柔性生产线的深度融合,并通过智能检测系统与预测性维护提升了质量控制的精准度。此外,智能钱包与自动化商品系统的应用优化了物流配送效率。第三,在劳动对象层面,AI大模型在原材料采购环节实现了智能选料与供应商评估;在生产制造过程中确保了全流程质量追溯与精准加工;通过材料优化与功能提升推动了产品创新;并在售后服务中实现了产品全生命周期的智能管理。第四,在生产关系层面,AI大模型促进了跨部门的信息共享与决策协调;在供应链管理中实现了端到端优化与风险预警;通过个性化服务与价值共创积累了客户;并通过开放创新与资源整合构建了更加开放和协作关系的产业生态系统。这种赋能逻辑不仅涵盖了传统生产要素,还体现了数字时代生产关系的革新,从而全面推动了工业新质生产力的提升。
四、AI大模型赋能工业新质生产力的作用机制
结合内生逻辑和对相关产业实践案例的分析,文章归纳出AI大模型赋能工业新质生产力的最终目标在于培养劳动主体“新素质”、构建劳动资料组合“新模式”、创造劳动对象“新价值”以及激发生产关系“新动能”。基于上述目标,文章分析了赋能路径及对其路径下的作用机理如图6所示。具体而言,工业新质生产力通过AI大模型的赋能,“新素质”劳动者能够更好地发挥创造力,劳动资料组合“新模式”提供了高效的生产工具,劳动对象“新价值”拓展了价值创造的空间,而生产关系的“新动能”为整个系统的高效运行提供了制度保障。
1.AI大模型培养工业劳动主体“新素质”
AI大模型通过能力增强、知识赋能和协作优化3个维度赋能劳动主体,形成精准加工、全程追溯和价值提升的培养路径,培养“新素质工业劳动者”。其培养机制主要体现在:一是能力增强。AI大模型构建的智能辅助系统,通过实时生产数据分析和决策支持,提升劳动主体的精准加工能力。该系统不仅能提升操作准确性,预测质量问题,更能培养工人的数据分析能力和系统思维,深化其对复杂生产过程的理解与控制。二是知识赋能。AI大模型通过打造个性化学习平台,实现全程知识追溯。基于工人个体特征定制学习路径,通过数据分析识别知识盲点,实现技能提升和知识更新。这种赋能机制培养了工人的自主学习能力,增强其适应工业环境变革的韧性。三是优化协作层面。AI大模型通过创造部署协作增强工具,促进价值提升。其通过智能任务分配优化人机协作流程,利用数据可视化和智能报告促进跨部门信息共享,提升团队协作效能,进而实现企业整体生产效率的提高。
2.AI大模型构建工业劳动资料组合“新模式”
AI大模型从智能化改造升级、效能优化和柔性增强3个维度形成劳动资料组合“新模式”,优化传统生产工具和设备,提升工业生产系统对市场需求变化的适应能力。其构建机制主要体现在:一是智能化改造升级。AI大模型通过深度嵌入现有设备,赋予其自主学习和决策能力。如注射机能根据原料特性和环境条件自动调整工艺参数,实现定制生产。这种整体性智能升级不仅可以提升单个设备性能,还可实现生产系统的智能协同,增强生产精度和稳定性。二是效能优化。AI大模型通过构建预测性维护系统,实时监测设备运行状态,优化维护计划,提升了设备利用率和生产效率。同时,基于设备性能数据分析,系统能及时提供优化建议,持续提升生产效率。三是柔性增强。AI大模型通过打造柔性生产系统,提升设备的多功能性和可重构性。通过快速调整生产布局和工艺流程,实现多品种小批量生产,满足多样化市场需求,增强了生产系统的通用性和灵活性。
3.AI大模型创造工业劳动对象“新价值”
AI大模型通过精准加工、全程追溯和价值提升3个维度赋能劳动对象,实现价值累积过程,推动工业生产向高质量、高附加值方向发展。其创造工业劳动对象“新价值”的机制主要体现在:一是精准加工。AI大模型通过构建智能质量控制系统,基于机器学习和深度学习实现实时监测和自适应调整。系统通过识别微小质量偏差,预测潜在问题,提前采取预防措施,提升产品质量以降低损耗。二是全程追踪。AI大模型结合区块链技术构建全链追踪平台,实现产品全生命周期质量管控。通过准确记录产品各环节状态,及时发现并解决问题,为产品创新提供数据支撑,增强产品可信度。三是价值提升。AI大模型通过分析市场需求和用户反馈,精准识别改进方向,生成多样化创新方案,激发工程师创意思维,有效挖掘产品潜在价值。
4.AI大模型激发工业生产关系“新动能”
AI大模型通过协同优化、资源整合和模式创新3个维度激发生产关系“新动能”,突破传统生产模式局限,为工业新质生产力发展注入驱动力。其激发“新动能”的机制体现在:一是协同优化。AI大模型通过构建智能供应链平台,实现跨部门、跨企业的高效协作。实时整合各环节信息,提供全局可视化视图,动态调整生产和物流计划,减少库存积压,提升供应链运行效率,增强竞争力。二是资源整合。AI大模型通过打造资源调配中心,实现资源优化配置。全面感知企业内外部资源状态,建立动态映射,根据生产需求自动生成优化方案,实现人力资源精准匹配,提高整体运营效率。三是模式创新。驱动数字孪生系统,推动商业模式和管理模式创新。构建企业运营虚拟镜像,实现全方位实时监控,模拟决策场景评估影响,突破效率瓶颈,为产品全生命周期管理提供支撑。
五、AI大模型赋能工业新质生产力的行动框架
1.AI大模型赋能工业新质生产力的瓶颈挑战
AI大模型赋能工业新质生产力过程中面临的主要挑战体现在4个维度:一是在劳动主体维度,主要包括劳动降级、学习压力和人机冲突三大挑战。AI大模型应用加速技能需求变革,引发职业替代风险上升,迫使工人急需重塑技能以保持竞争力。不同群体承受持续学习的压力,年轻人面临终身学习焦虑,年长或教育背景较弱者则面临市场淘汰风险。此外,人机协同常态化将致使决策权责模糊,引发身份认同危机和工作文化冲突,对传统管理模式形成挑战。二是在劳动资料维度,主要存在能源短缺、设备集成和场景适配三大制约。随着大模型参数和数据规模的进一步增加,AI的能耗问题将越来越突出,加剧能源压力和碳排放负担。传统设备升级面临高昂成本、生产中断风险和兼容性障碍,同时网络基础设施难以满足实时数据需求。工业场景的高度碎片化、专业化特征与边缘计算能力限制,都将影响模型部署效果和产品质量保障。三是在劳动对象维度,主要体现为数据多源异构、时序稀疏和高度敏感三大特征。数据来源涉及生产设备、控制系统等多元体系,在协议、格式和语义上差异显著,导致“采集难、融合难”。生产过程参数具有复杂的长短期依赖关系,加之低频事件、工艺变化和数据缺失,带来“建模难、预测难”。数据安全顾虑和所有权争议引发“共享难、价值难释放”,制约产业链协同发展。四是在生产关系维度,主要涉及协同路径重构、利益分配失衡和制度滞后三大问题。传统管理模式受到挑战,尤其中小企业在资金、经验和技术储备方面适应困难。技术收益分配不均将加剧劳资关系紧张,扩大企业间差距。而现有法规难以适应AI驱动的新型生产关系,在知识产权保护、劳动权益定义和技术垄断防范等方面亟须制度创新。
2.AI大模型赋能工业新质生产力的发展策略
AI大模型赋能工业新质生产力的发展策略应遵循以人为本、协同创新、系统思维、包容发展和开放合作的基本原则,分短、中、长期系统推进。
在短期战略层面,要重点夯实发展基础。第一,在劳动主体方面,建立政企教协同的技能培训体系,设立转型支持基金,开展职业发展规划指导和心理健康服务,应对技术变革给劳动主体带来的即时压力。第二,在劳动资料方面,启动高效能计算和新型芯片研发项目,构建工业知识图谱基础框架,在重点区域部署5G和工业互联网试点,夯实数字基础设施建设。第三,在劳动对象方面,制定统一工业数据标准,借鉴先进数据安全共享技术,规划国家级数据交易所建设,建立初步数据治理框架。第四,在生产关系方面,试点推广扁平化组织结构,研究AI收益共享方案,进一步完善我国AI治理框架。
在中期战略层面,要注重稳步推进发展。第一,在劳动主体方面,优化人机协作模式,完善劳动权益保护制度,实施差异化人才管理策略,构建终身学习体系。第二,在劳动资料方面,实现工业大小模型协同应用,完善国家工业知识图谱建设,启动国家级工业云平台建设,为中小企业提供普惠性解决方案。第三,在劳动对象方面,建立跨领域数据标准和本体库,实现重点领域数据安全协作以及数据交易所规范化发展,实施产权登记试点。第四、在生产关系方面,推广数字孪生等新技术应用提高生产效率,在试点企业实施AI收益共享机制,建立再就业援助计划。
在长期战略层面,要着力深化发展成果。第一,在劳动主体方面,构建完整的双元劳动主体生态体系,完善人机协同伦理框架,实现全生命周期的技能提升体系。第二,在劳动资料方面,建立多维度系统化的智能制造生态体系,实现清洁能源在AI领域的广泛应用,形成高效的跨部门跨行业协同创新机制。第三,在劳动对象方面,实现工业数据全面标准化交互操作,构建成熟的数据安全共享生态,形成数据科学与工业知识深度融合的应用体系。第四,在生产关系方面,建立具有中国特色的工业新质生产力治理体系,实现AI发展成果的广泛共享,深化国际合作与竞争,培育具有国际竞争力的AI产业集群。
六、研究结论与议题展望
1.研究结论
第一,AI大模型在工业新质生产力发展中的赋能逻辑贯穿产业链主要环节,涵盖生动力四要素。在劳动主体方面,增强研发创造力,提升生产效率精准度,优化供应链管理,革新营销模式;在劳动资料方面,推动研发数字化转型,实现生产标准化与柔性化,提升质控精准度,优化物流效率;在劳动对象方面,实现智能选料评估,确保全程质量追溯,推动产品创新,完善全生命周期管理;在生产关系方面,促进跨部门协作,优化供应链管理,积累客户资源,构建开放协作生态。
第二,AI大模型赋能工业新质生产力的目标指向明确,作用机理清晰。通过能力增强、知识赋能和协作优化培养劳动主体“新素质”;利用智能化改造、效能优化和柔性增强构建劳动资料“新模式”;依靠精准加工、全程追溯和价值提升创造劳动对象“新价值”;通过协调优化、资源整合和模式创新激发生产关系“新动能”。
第三,当前AI大模型赋能工业新质生产力存在瓶颈。在面临劳动主体的技能重塑、劳动资料的技术突破、劳动对象的数据治理、生产关系的制度创新等挑战时,应采取培育新型劳动队伍、发挥举国体制优势攻关核心技术、推动数据标准化共享、构建中国特色治理体系等策略,推动工业新质生产力高质量发展。
2.议题展望
一是深化AI大模型在特定工业领域的应用研究。探索AI大模型在制造、能源、物流等垂直领域的定制化应用策略,提高模型在复杂、动态工业环境中的适应性和鲁棒性。二是加强人机协作模式研究与实践。设计评估新型人机协作框架,优化任务分配和决策流程。研究AI辅助决策系统在工业管理中的应用,提高决策透明度和可解释性。探索基于AI的技能增强和在岗培训方法,提高工人适应新技术的能力。三是推进工业数据生态系统建设。研发高效低成本的数据采集技术,探索异构数据融合清洗新算法,开发适应工业复杂性的新型建模方法。研究工业预测性维护和异常检测新技术,设计安全高效的数据共享机制,如联邦学习、区块链等,解决工业数据“五难”问题。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓