在结束之际,我想重申的是,学习并非如攀登险峻高峰,而是如滴水穿石般的持久累积。尤其当我们步入工作岗位之后,持之以恒的学习变得愈发不易,如同在茫茫大海中独自划舟,稍有松懈便可能被巨浪吞噬。然而,对于我们程序员而言,学习是生存之本,是我们在激烈市场竞争中立于不败之地的关键。一旦停止学习,我们便如同逆水行舟,不进则退,终将被时代的洪流所淘汰。因此,不断汲取新知识,不仅是对自己的提升,更是对自己的一份珍贵投资。让我们不断磨砺自己,与时代共同进步,书写属于我们的辉煌篇章。
需要完整版PDF学习资源
需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- Emotion
- Race / Ethnicity
直接使用浏览器的下载速度堪称龟速,还很容易失败,我是用云服务器进行的下载,以下是全部链接:
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/arcface_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/deepid_keras_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/facenet512_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/facenet_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/openface_weights.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/retinaface.h5
wget -c https://github.com/serengil/deepface_models/releases/download/v1.0/vgg_face_weights.h5
wget -c https://github.com/serengil/deepface_models/archive/refs/tags/v1.0.zip
wget -c https://github.com/serengil/deepface_models/archive/refs/tags/v1.0.tar.gz
刚开始速度也是很慢,随后就会起飞,如果一分钟还是几K的速度就断开重新开始,速度几M是可以达到的。下载成功后放置到functions.get_deepface_home()
目录下【不同设备的目录不同以下仅供参考】:
- Windows系统
C:\Users\Administrator
下的/.deepface/weights/
目录下。 - Linux系统
/root
下的/.deepface/weights/
目录下。
执行以下代码获取模型目录:
from deepface.commons import functions
if __name__ == "\_\_main\_\_":
home = functions.get_deepface_home()
print(home)
2.2 Facial Recognition
A modern face recognition pipeline consists of 5 common stages: detect, align, normalize, represent and verify. While Deepface handles all these common stages in the background, you don’t need to acquire in-depth knowledge about all the processes behind it. You can just call its verification, find or analysis function with a single line of code.
如今的人脸识别流程包括5个基本阶段:检测、对齐、归一化、表示和验证。Deepface会在后台处理所有这些,因此您不需要深入了解其背后的所有过程。你可以用一行代码调用它的验证、查找或分析函数。
2.3 Face Verification
这个函数验证一对人脸是否是同一个人。它期望输入的是精确的图像路径。也可以传递numpy或base64编码的图像。然后,它将返回一个字典,你只需要检查它的verified键。
result = DeepFace.verify(img1_path = "img1.jpg", img2_path = "img2.jpg")
# 由于测试时【VGG-Face】模型未下载完成故使用【Facenet】
result = DeepFace.verify(img1_path="tests/dataset/img1.jpg", img2_path="tests/dataset/img2.jpg", model_name="Facenet")
结果数据如下:
{
"detector\_backend": "opencv",
"distance": 0.24256996744273296,
"facial\_areas": {
"img1": {
"h": 769,
"w": 769,
"x": 345,
"y": 211
},
"img2": {
"h": 512,
"w": 512,
"x": 516,
"y": 192
}
},
"model": "Facenet",
"similarity\_metric": "cosine",
"threshold": 0.4,
"time": 5.93,
"verified": True
}
由于使用的模型不同,结果跟图片中的不完全一致:
验证函数也可以处理多人脸对的情况。将会比较最相似的面部。测试代码及结果如下:
result = DeepFace.verify(img1_path="tests/dataset/img1.jpg", img2_path="tests/dataset/couple.jpg", model_name="Facenet")
{
"detector\_backend": "opencv",
"distance": 0.2260340280992379,
"facial\_areas": {
"img1": {
"h": 769,
"w": 769,
"x": 345,
"y": 211
},
"img2": {
"h": 779,
"w": 779,
"x": 318,
"y": 534
}
},
"model": "Facenet",
"similarity\_metric": "cosine",
"threshold": 0.4,
"time": 5.2,
"verified": True
}
由于使用的模型不同,结果跟图片中的不完全一致:
2.4 Face recognition
人脸识别需要多次进行人脸验证。在这里,deepface有一个开箱即用的查找函数来处理这个动作。它将在数据库路径中查找输入图像的身份它将返回pandas数据帧列表作为输出。同时,人脸数据库中的人脸嵌入被存储在pickle文件中,以便下次快速搜索。结果将是出现在源图像中的脸的大小。此外,数据库中的目标图像也可以有多个人脸。
dfs = DeepFace.find(img_path = "img1.jpg", db_path = "C:/workspace/my\_db")
# 使用源码里的测试图片
dfs = DeepFace.find(img_path="tests/dataset/img1.jpg", db_path="tests/dataset/", model_name="Facenet")
结果数据,facenet_cosine越小相似度越高:
[ identity source_x ... source_h Facenet_cosine
0 tests/dataset//img1.jpg 345 ... 769 0.000000
1 tests/dataset//img11.jpg 345 ... 769 0.184640
2 tests/dataset//img7.jpg 345 ... 769 0.193672
3 tests/dataset//img10.jpg 345 ... 769 0.221339
4 tests/dataset//couple.jpg 345 ... 769 0.226034
5 tests/dataset//img6.jpg 345 ... 769 0.230715
6 tests/dataset//img2.jpg 345 ... 769 0.242570
7 tests/dataset//img4.jpg 345 ... 769 0.246557
8 tests/dataset//img5.jpg 345 ... 769 0.259066
[9 rows x 6 columns]]
2.5 Embeddings
人脸识别模型基本上是将人脸图像表示为多维向量。有时候,你直接需要这些嵌入向量。DeepFace带有专门的表示函数。标识函数返回嵌入列表。结果将是出现在图像路径中的面的大小。
embedding_objs = DeepFace.represent(img_path = "tests/dataset/img1.jpg")
# 实际测试
embedding_objs = DeepFace.represent(img_path="tests/dataset/img1.jpg", model_name="Facenet")
结果数据,:
[
{
"embedding": [
0.8134615421295166,
1.0957121849060059,
1.477981686592102,
-1.6971195936203003,
0.49749791622161865,
-0.6081872582435608...[省略了一些数据]
],
"face\_confidence": 10.068783960014116,
"facial\_area": {
"h": 769,
"w": 769,
"x": 345,
"y": 211
}
}
]
这个函数返回一个数组作为嵌入。嵌入数组的大小将根据模型名称而有所不同。例如,VGG-Face是默认模型,它将面部图像表示为2622维向量。
embedding = embedding_objs[0]["embedding"]
assert isinstance(embedding, list)
assert model_name = "VGG-Face" and len(embedding) == 2622
# 实际测试
embedding = embedding_objs[0]["embedding"]
assert isinstance(embedding, list)
assert len(embedding) == 128
在这里,嵌入也是用2622个槽水平绘制的。每个槽对应嵌入向量中的一个维度值,维度值在右侧的颜色条中进行说明。与2D条形码类似,垂直维度在插图中不存储任何信息。
2.6 Face recognition models
Deepface is a hybrid face recognition package. It currently wraps many state-of-the-art face recognition models: VGG-Face,
Google FaceNet,
OpenFace,
Facebook DeepFace,
DeepID,
ArcFace,
Dliband
SFace. The default configuration uses VGG-Face model.
models = ["VGG-Face", "Facenet", "Facenet512", "OpenFace", "DeepFace", "DeepID", "ArcFace", "Dlib", "SFace"]
# face verification
result = DeepFace.verify(img1_path = "img1.jpg",
img2_path = "img2.jpg",
model_name = models[0]
)
# face recognition
dfs = DeepFace.find(img_path = "img1.jpg",
db_path = "C:/workspace/my\_db",
model_name = models[1]
)
# embeddings
embedding_objs = DeepFace.represent(img_path = "img.jpg",
model_name = models[2]
)
# 这些跟前边的一样 不再进行实测
FaceNet, VGG-Face, ArcFace and Dlib are overperforming ones based on experiments. You can find out the scores of those models below on both Labeled Faces in the Wild and YouTube Faces in the Wild data sets declared by its creators.
Model | LFW Score | YTF Score |
---|---|---|
Facenet512 | 99.65% | - |
SFace | 99.60% | - |
ArcFace | 99.41% | - |
Dlib | 99.38 % | - |
Facenet | 99.20% | - |
VGG-Face | 98.78% | 97.40% |
Human-beings | 97.53% | - |
OpenFace | 93.80% | - |
DeepID | - | 97.05% |
LFW Score和YTF Score是两种用于评估人脸识别算法性能的指标,分别基于LFW和YTF两个数据集。LFW(Labeled Faces in the Wild)是一个包含超过13,000张带有人名标注的人脸图像的数据集,这些图像来自互联网上不同的人脸图库,涵盖了各种人种、姿态和表情。YTF(YouTube Faces)是一个包含3425个视频的人脸视频数据集,这些视频来自YouTube上1595个不同人的视频,涉及大量的姿态、表情、光照和遮挡变化。LFW Score和YTF Score分别使用LFW和YTF数据集中的匹配对和不匹配对来测试人脸识别算法是否能够正确判断两张人脸是否属于同一个人。一般来说,LFW Score和YTF Score越高,表示人脸识别算法越准确。
2.7 Similarity
人脸识别模型是正则卷积神经网络,它们负责将人脸表示为向量。我们认为同一个人的两张脸应该比不同人的两张脸更相似。相似度可以通过余弦相似度、欧氏距离和L2形式等不同度量来计算。默认配置使用余弦相似度。
metrics = ["cosine", "euclidean", "euclidean\_l2"]
#face verification
result = DeepFace.verify(img1_path = "img1.jpg",
img2_path = "img2.jpg",
distance_metric = metrics[1]
)
#face recognition
dfs = DeepFace.find(img_path = "img1.jpg",
db_path = "C:/workspace/my\_db",
distance_metric = metrics[2]
)
# 实际测试
# face verification
result = DeepFace.verify(img1_path="tests/dataset/img1.jpg",
img2_path="tests/dataset/img2.jpg",
model_name="Facenet",
distance_metric=metrics[1]
)
# face recognition
dfs = DeepFace.find(img_path="tests/dataset/img1.jpg",
db_path="tests/dataset/",
model_name="Facenet",
distance_metric=metrics[2]
)
前面的cosine
距离是0.24256996744273296
:
{
"detector\_backend": "opencv",
"distance": 8.146639638611239,
"facial\_areas": {
"img1": {
"h": 769,
"w": 769,
"x": 345,
"y": 211
},
"img2": {
"h": 512,
"w": 512,
"x": 516,
"y": 192
}
},
"model": "Facenet",
"similarity\_metric": "euclidean",
"threshold": 10,
"time": 4.53,
"verified": True
}
之前的Facenet_cosine
跟Facenet_euclidean_l2
区别还是挺大的:
[ identity source_x ... source_h Facenet_euclidean_l2
0 tests/dataset//img1.jpg 345 ... 769 0.000000
1 tests/dataset//img11.jpg 345 ... 769 0.607683
2 tests/dataset//img7.jpg 345 ... 769 0.622369
3 tests/dataset//img10.jpg 345 ... 769 0.665341
4 tests/dataset//couple.jpg 345 ... 769 0.672360
5 tests/dataset//img6.jpg 345 ... 769 0.679286
6 tests/dataset//img2.jpg 345 ... 769 0.696520
7 tests/dataset//img4.jpg 345 ... 769 0.702221
8 tests/dataset//img5.jpg 345 ... 769 0.719814
[9 rows x 6 columns]]
欧几里得L2形式似乎比余弦和正则欧几里得距离更稳定。但是实际使用,更常用的是cosine
因为它的结果是0~1
可以换算成相似度100%~0%
。
2.8 Facial Attribute Analysis
Deepface还配备了强大的面部属性分析模块,包括年龄,性别,面部表情(包括愤怒,恐惧,中性,悲伤,厌恶,惊喜)和种族(包括亚洲人、白人、中东人、印度人、拉丁裔和黑人)预测。结果将是出现在源图像中的脸的大小。
objs = DeepFace.analyze(img_path = "img4.jpg",
actions = ['age', 'gender', 'race', 'emotion']
)
# 实际测试
objs = DeepFace.analyze(img_path="tests/dataset/img4.jpg", actions=['age', 'gender', 'race', 'emotion'])
结果数据:
[
{
"age": 31,
"dominant\_emotion": "happy",
"dominant\_gender": "Woman",
"dominant\_race": "white",
"emotion": {
"angry": 0.06343021349136967,
"disgust": 0.000025026363773344608,
"fear": 0.16905087126557575,
"happy": 92.43509859620349,
"neutral": 6.627006038784261,
"sad": 0.4689154121827588,
"surprise": 0.23647171420196125
},
"gender": {
"Man": 0.00018949589275507606,
"Woman": 99.99980926513672
},
"race": {
"asian": 0.05465112952298698,
"black": 0.0038303477149617426,
"indian": 0.08727377218708528,
"latino hispanic": 3.3318923909600016,
"middle eastern": 5.098589813625205,
"white": 91.42376133345135
},
"region": {
"h": 919,
"w": 919,
"x": 419,
"y": 301
}
}
]
根据其教程,年龄模型的平均绝对误差为±4.65,性别模型的准确率为97.44%,精度为96.29%,召回率为95.05%。
2.9 Face Detectors
人脸检测和对齐是现代人脸识别流程的重要早期阶段。实验表明,仅仅对齐就能使人脸识别准确率提高近1%。OpenCV,SSD,Dlib,MTCNN,RetinaFace,MediaPipe,YOLOv8 Face和YuNet探测器被包裹在deepface中。
所有deepface函数都接受一个可选的检测器后端输入参数。你可以用这个参数在这些检测器之间切换。OpenCV是默认的检测器。
backends = [
'opencv',
'ssd',
'dlib',
'mtcnn',
'retinaface',
'mediapipe',
'yolov8',
'yunet',
]
#face verification
obj = DeepFace.verify(img1_path = "img1.jpg",
img2_path = "img2.jpg",
detector_backend = backends[0]
)
#face recognition
dfs = DeepFace.find(img_path = "img.jpg",
还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!
王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。
对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!
【完整版领取方式在文末!!】
***93道网络安全面试题***



**需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)**
内容实在太多,不一一截图了
### 黑客学习资源推荐
最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
#### 1️⃣零基础入门
##### ① 学习路线
对于从来没有接触过网络安全的同学,我们帮你准备了详细的**学习成长路线图**。可以说是**最科学最系统的学习路线**,大家跟着这个大的方向学习准没问题。

##### ② 路线对应学习视频
同时每个成长路线对应的板块都有配套的视频提供:

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以点击这里获取](https://bbs.csdn.net/topics/618540462)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**