论文题目:《MobileFaceNets: Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices》
论文地址:https://arxiv.org/pdf/1804.07573v4.pdf
1.简介
近年来,MobilenetV1,ShuffleNet和MobileNetV2等轻量级网络多用于移动终端的视觉识别任务,但是由于人脸结构的特殊性,这些网络在人脸识别任务上并没有获得满意的效果。针对这一问题,提出了一种专门针对人脸识别的轻量级网络MobileFaceNet。
如下图所示,在使用MobileNetV2等网络进行人脸识别时,平均池化层对FMap-end的Corner Unit和Center Unit给予了同样的权重,但实际上,对于人脸识别来说,中心单元的重要程度显然比角单元重要。因此,需要对网络进行有针对性的优化。论文中,最重要的一个优化就是使用Global Depthwise Convolution (GDConv,全局逐深度卷积层)代替Global Average Pooling (GAP,全局平均池化层),因为GDConv的weights即相当于实现不同位置的重要性权重系数。