[DL]机器学习算法之之线性回归(Linear Regression)(2)

附上代码(模型的实现步骤写在代码中):


import matplotlib.pyplot as plt

import numpy as npfrom sklearn 

import datasets, linear_model

from sklearn.metrics import mean_squared_error, r2_score

#线性模型一般形式:

#y=w_1*x_1+w_2*x_2+w_3*x_3+...

#loss=min||w*x-y||^2



lr = linear_model.LinearRegression()

boston = datasets.load_boston()

y = boston.target



diabetes=datasets.load_diabetes()

# Bunch(data=data, target=target, DESCR=fdescr,

#feature_names=['age', 'sex', 'bmi', 'bp',

#'s1', 's2', 's3', 's4', 's5', 's6'])



print(diabetes.feature_names)#特征10维

print(diabetes.data.shape)#442个数据

print(diabetes.target.shape)#442

#print(diabetes.DESCR)#描述

#为了方便画图,这里只使用一个特征

diabetes_X = diabetes.data[:,np.newaxis,2]

#划分测试集和训练集

diabetes_X_train = diabetes_X[:-20]

diabetes_X_test = diabetes_X[-20:]

diabetes_y_train = diabetes.target[:-20]

diabetes_y_test = diabetes.target[-20:]



#创建线性模型

regr = linear_model.LinearRegression()

# 训练

regr.fit(diabetes_X_train, diabetes_y_train)

# 进行预测

diabetes_y_pred = regr.predict(diabetes_X_test)

# 参数w

print('w: \n', regr.coef_)

# 均方误差

print("均方误差: %.2f"% mean_squared_error(diabetes_y_test, 

diabetes_y_pred))



# 最后

上面这些公司都是时下最受欢迎的互联网大厂,他们的职级、薪资、福利也都讲的差不多了,相信大家都是有梦想和野心的人,心里多少应该都有些想法。

也相信很多人也都在为即将到来的金九银十做准备,也有不少人的目标都是这些公司。

我这边有不少朋友都在这些厂工作,其中也有很多人担任过面试官,**上面的资料也差不多都是从朋友那边打探来的。除了上面的信息,我这边还有这些大厂近年来的面试真题及解析,以及一些朋友出于兴趣和热爱一起整理的Android时下热门知识点的学习资料**。

**部分文件:**
![](https://img-blog.csdnimg.cn/img_convert/8c527ab63f5660289acfd5e7a135d91f.webp?x-oss-process=image/format,png)
![](https://img-blog.csdnimg.cn/img_convert/e611c3364842aef2921409d5e84a5271.webp?x-oss-process=image/format,png)
![](https://img-blog.csdnimg.cn/img_convert/9a7a990707605ea11f41800885f9a592.webp?x-oss-process=image/format,png)



**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618156601)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值