附上代码(模型的实现步骤写在代码中):
import matplotlib.pyplot as plt
import numpy as npfrom sklearn
import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
#线性模型一般形式:
#y=w_1*x_1+w_2*x_2+w_3*x_3+...
#loss=min||w*x-y||^2
lr = linear_model.LinearRegression()
boston = datasets.load_boston()
y = boston.target
diabetes=datasets.load_diabetes()
# Bunch(data=data, target=target, DESCR=fdescr,
#feature_names=['age', 'sex', 'bmi', 'bp',
#'s1', 's2', 's3', 's4', 's5', 's6'])
print(diabetes.feature_names)#特征10维
print(diabetes.data.shape)#442个数据
print(diabetes.target.shape)#442
#print(diabetes.DESCR)#描述
#为了方便画图,这里只使用一个特征
diabetes_X = diabetes.data[:,np.newaxis,2]
#划分测试集和训练集
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
#创建线性模型
regr = linear_model.LinearRegression()
# 训练
regr.fit(diabetes_X_train, diabetes_y_train)
# 进行预测
diabetes_y_pred = regr.predict(diabetes_X_test)
# 参数w
print('w: \n', regr.coef_)
# 均方误差
print("均方误差: %.2f"% mean_squared_error(diabetes_y_test,
diabetes_y_pred))
# 最后
上面这些公司都是时下最受欢迎的互联网大厂,他们的职级、薪资、福利也都讲的差不多了,相信大家都是有梦想和野心的人,心里多少应该都有些想法。
也相信很多人也都在为即将到来的金九银十做准备,也有不少人的目标都是这些公司。
我这边有不少朋友都在这些厂工作,其中也有很多人担任过面试官,**上面的资料也差不多都是从朋友那边打探来的。除了上面的信息,我这边还有这些大厂近年来的面试真题及解析,以及一些朋友出于兴趣和热爱一起整理的Android时下热门知识点的学习资料**。
**部分文件:**
![](https://img-blog.csdnimg.cn/img_convert/8c527ab63f5660289acfd5e7a135d91f.webp?x-oss-process=image/format,png)
![](https://img-blog.csdnimg.cn/img_convert/e611c3364842aef2921409d5e84a5271.webp?x-oss-process=image/format,png)
![](https://img-blog.csdnimg.cn/img_convert/9a7a990707605ea11f41800885f9a592.webp?x-oss-process=image/format,png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618156601)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**