(3)函数参数设计应该考虑向下兼容
(4)一个函数只做一件事,尽量保证函数粒度的一致性
建议7:将常量集中在一个文件,且常量名尽量使用全大写字母
建议8:利用assert语句来发现问题,但要注意,断言assert会影响效率
建议9:数据交换值时不推荐使用临时变量,而是直接a, b = b, a
建议10:充分利用惰性计算(Lazy evaluation)的特性,从而避免不必要的计算
建议11:理解枚举替代实现的缺陷(最新版Python中已经加入了枚举特性)
建议12:不推荐使用type来进行类型检查,因为有些时候type的结果并不一定可靠。如果有需求,建议使用isinstance函数来代替
建议13:尽量将变量转化为浮点类型后再做除法(Python3以后不用考虑)
建议14:警惕eval()函数的安全漏洞,有点类似于SQL注入
建议15:使用enumerate()同时获取序列迭代的索引和值
建议16:分清==和is的适用场景,特别是在比较字符串等不可变类型变量时(详见评论)
建议17:尽量使用Unicode。在Python2中编码是很让人头痛的一件事,但Python3就不用过多考虑了
建议18:构建合理的包层次来管理Module
建议19:有节制的使用from…import语句,防止污染命名空间
建议20:优先使用absolute import来导入模块(Python3中已经移除了relative import)
建议21:i+=1不等于++i,在Python中,++i前边的加号仅表示正,不表示操作
建议22:习惯使用with自动关闭资源,特别是在文件读写中
建议23:使用else子句简化循环(异常处理)
建议24:遵循异常处理的几点基本原则
(1)注意异常的粒度,try块中尽量少写代码
(2)谨慎使用单独的except语句,或except Exception语句,而是定位到具体异常
(3)注意异常捕获的顺序,在合适的层次处理异常
(4)使用更加友好的异常信息,遵守异常参数的规范
建议25:避免finally中可能发生的陷阱
建议26:深入理解None,正确判断对象是否为空。Python中下列数据会判断为空:
建议27:连接字符串应优先使用join函数,而不是+操作
建议28:格式化字符串时尽量使用.format函数,而不是%形式
建议29:区别对待可变对象和不可变对象,特别是作为函数参数时
建议30:[], {}和():一致的容器初始化形式。使用列表解析可以使代码更清晰,同时效率更高
建议31:函数传参数,既不是传值也不是传引用,而是传对象或者说对象的引用
建议32:警惕默认参数潜在的问题,特别是当默认参数为可变对象时
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
/618317507)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!