最后
Android学习是一条漫长的道路,我们要学习的东西不仅仅只有表面的 技术,还要深入底层,弄明白下面的 原理,只有这样,我们才能够提高自己的竞争力,在当今这个竞争激烈的世界里立足。
人生不可能一帆风顺,有高峰自然有低谷,要相信,那些打不倒我们的,终将使我们更强大,要做自己的摆渡人。
资源持续更新中,欢迎大家一起学习和探讨。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
-
B. 双立方
-
C. lanczos插值
-
D.双线性
6.常见的RGB图像每个像素点颜色值范围
-
A. 0~1
-
B. 0~256
-
C.0~255
-
D.0~180
7.关于RGB色彩的描述下面正确的是:
-
A.RGB(255,255,255)表示黑色
-
B.RGB(0,0,255)表示蓝色
-
C.RGB(255,0,0)表示绿色
-
D.RGB(0,0,0)表示白色
8.常见的图像色彩空间有:
-
A. HSL
-
B. HSV
-
C. RGB
-
D. YCrCb
9.常见的图形绘制时候像素渲染方法有
-
A.四邻域渲染
-
B.八邻域渲染
-
C.透明通道混合反锯齿渲染
-
D.游戏渲染
10.下面关于RGB图像亮度与对比度说法正确的是
-
A.颜色值越高,亮度越高
-
B.降低图像亮度会影响图像对比度
-
C.亮度就是图像对比度
-
D.图像对比度就是图像直方图
上面10道题是图像处理基础知识考察,其考察目的是检验是否拥有学习OpenCV一些必备的基础知识,如果你一半都没有做对(关注公众号,发送 【答案】两个字,即可查看答案),我觉得暂时你应该先放下你的那些识别、检测的目标,而是老老实实的看视频课程或者图书、博客文章等,厘清这些基本概念,本人根据自己学习图像处理、计算机视觉与OpenCV亲身经历,总结一个学习路线图,仅供大家参考:
大致分为三个阶段,第一个阶段应该是基础,第二个阶段是提升、第三个阶段是应用,而很多初学者一般都看重的是第三部分,素不知前面还有N多东西没学,正所谓“千里之行,始于足下”。只有走好学习OpenCV的第一步我们才能走好剩下的999步。否则就会出现“欲速则不达”的尴尬局面,貌似懂,一做应用什么都不行,调用哪个OpenCV算法函数都无法解决问题的进退维谷之中。
###二:做内外兼修的OpenCV开发者
OpenCV3.x中集成了超过1000个算法模块,这些算法如何组合使用,他们的参数意义,算法的原理与适用场景条件等各不相同,要成为一个真正的OpenCV开发高手,必须精通常见的算法原理,各个参数意义,参数使用等。
就拿我们最常见的OpenCV中HAAR人脸检测来说吧,整个代码演示我可以做到20行以内实现,但是具体到应用场景,我就听到有人跟我说HAAR级联人脸检测速度太慢了这样的抱怨,原因是他连最基本的各个参数是什么意思都没搞清楚,更谈不上调参数优化啦HAAR级联检测器API调用如下:
void cv::CascadeClassifier::detectMultiScale
(
InputArray image,
std::vector
double scaleFactor = 1.1,
int minNeighbors = 3,
int flags = 0,
Size minSize = Size(),
Size maxSize = Size()
)
1. 第一个参数image是输入图像 第二个参数objects检测到的人脸BOX位置信息
-
第三个参数是放缩比率,这个参数是用来构建HAAR多尺度用的
-
第四个参数是计算人脸BOX的最小相邻个数 第五个参数是标志,在OpenCV3.0以后的版本中已经不再使用,没有任意意义
-
第六个参数是检测人脸时,可以检出BOX的最小宽高
-
第七个参数是检测人脸时,可以检出BOX的最大宽高
上述的七个参数,对检测速度与检测结果影响比较大的分别是第三、第四、第六、第七个参数,第六与第七个参数是设置大小,这个很容易理解,比较难理解的是第四个,最小相邻个数,假设最小相邻数目取3、则有下图:
表示在最终红色BOX人脸检测结果是基于HAAR级联检测砖红色、青色、蓝色框的求得平均值得到红色BOX框,理论上3表示至少有三个候选,这个参数值越大,检测结果输出人脸的准确率越高,同样耗时也会越长、还会导致漏检率增加。
而很多初学者没有仔细了解该参数的意义,更无从谈起如何优化参数,另外三个参数,如果考虑速度的话,最好设置最大与最小可检测人脸BOX范围,这里有利于减少计算时间,提升实时性能。这里只是通过这个例子来说明OpenCV中的各个算法API参数重要性,要成为OpenCV开发高手,个人认为要做到内外兼修,这里内是指相关数学、算法论文都认真读、仔细的研究,不断加深对相关算法的理解与领悟;
外是指要加强动手能力,编程能力,做为OpenCV开发者我们首要职责就是负责让视觉相关应用落地,没有很强悍的工程能力与解决问题能力很难做到这点。结合本人的亲身实践和学习路径,建议在学习OpenCV 编程时搞清楚几点对学习更加有帮助
-
学习API函数时查找相关论文,尝试阅读论文
-
搞清楚学到的每个算法相关数学基础,尝试理解相关参数意义
-
学会看OpenCV官方的文档与代码示例
-
古语云“独学而无有、孤陋则寡闻”,所以多认识一些OpenCV学习者与开发者
-
从最新版本开始学习,OpenCV已经发布了OpenCV3.4.1最新版本,建议学习从OpenCV3.4开始学习,避免学习一些过期的API给自己带来不必要的烦恼与负担。
-
C++还是Python,当前OpenCV SDK支持C++与Python SDK,所以无论选择哪一种语言都可以学习OpenCV。
三:关注业界动态、紧跟技术潮流
如果你成功了经历了前面几个阶段,应该恭喜你是一个真正的OpenCV开发者啦,但是这个时候还有清醒的意识到你只是一个知道和熟悉常见OpenCV中算法、使用它们解决实际问题的开发者而已,要学会关注业界动态,关注OpenCV框架的新发展与新动向、特别是新算法在OpenCV框架中的实现与SDK发布。
举例来说DNN模块发布已经快一年了,本人一直跟踪OpenCV的每个Release、深刻感受到它的功能越来越完善与强大,个人观点以后OpenCV的大部分对象检测与识别都可能基于DNN模块实现,这样的好处是对开发者显而易见,即降低了学习门槛,有提高了检测准确性与精度,对于DNN这样的新模块,作为OpenCV开发者的你是否一直在不断跟踪它,另外注意学术界的动态,OpenCV社区会很快把一些最新CVPR上面的论文变成想法算法模块的,所以对一些影响比较大的CVPR的论文有条件要及时跟进阅读与理解。
很多人想学习人工智能相关的热门技术,我觉得OpenCV就是很接地气,也很好的方向选择,也不需要太过深奥的数学知识,即使零基础也可以学会、学好。正如古人所说“假舆马者,非利足也,而致千里;假舟楫者,非能水也,而绝江河。君子生非异也,善假于物也”,借助OpenCV这个神兵利器,开发者也会从检测到识别无所不能。
###后记
下面是我和朋友搜集的一些Android方面的资料,有需要的可以点击下面链接直接领取。或者私信(进阶)给我,我给你分享资料。这也是多谢大家这么久来的一个支持,希望能一起学习,共同进步。有想一起交流讨论的欢迎加入群聊:875911285(记得备注简书)
总结
最后为了帮助大家深刻理解Android相关知识点的原理以及面试相关知识,这里放上相关的我搜集整理的14套腾讯、字节跳动、阿里、百度等2021最新面试真题解析,我把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包知识脉络 + 诸多细节。
网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618156601)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!