第3页链接为:
https://www.huashi6.com/tags/161?p=3
可以看出,不同页面网址仅改变了页面数字,因此可以构造如下模式,并使用循环,爬取所有页面:
url_pattern = "https://www.huashi6.com/tags/161?p={}"
for i in range(1, 20):
url = url_pattern.format(i)
接下来,在爬取网页前,使用浏览器“开发者工具”,观察网页结构。首先尝试定位图片元素:
于是自然想到使用find_all
语法获取所有class=‘v-lazy-img v-lazy-image-loaded’
的标签:
img_url = soup.find_all('img', attr={'class': 'v-lazy-img v-lazy-image-loaded'})
但是发现并未成功获取,于是经过进一步探索发现,其图片信息是在script
元素中动态加载的:
需要注意的是,在请求页面时,可以在构造请求头时,添加'Cookie'
键值,但是没有此键值也能够运行。
headers = {
'User-Agent':'Mozilla/5.0 (X11; Ubuntu; Linux x86\_64; rv:86.0) Gecko/20100101 Firefox/86.0',
# 根据自己的情况修改Cookie值
#'Cookie':''
}
url_pattern = "https://www.huashi6.com/tags/161"
response = requests.get(url=url, headers=headers)
页面解析
使用beautifulsoup
解析页面,获取JS
中所需数据:
results = soup.find_all('script')[1]
为了能够使用re
解析获取内容,需要将内容转换为字符串:
image_dirty = str(results)
接下来构造正则表达式获取图片地址:
pattern = re.compile(item, re.I|re.M)
然后查找所有的图片地址:
result_list = pattern.findall(image_dirty)
为了方便获取所需字段,构造解析函数
def analysis(item,results):
pattern = re.compile(item, re.I|re.M)
result_list = pattern.findall(results)
return result_list
打印获取的图片地址:
urls = analysis(r'"path":"(.\*?)"', image_dirty)
urls[0:1]
发现一堆奇怪的字符:
'images\\u002Fresource\\u002F2021\\u002F06\\u002F20\\u002F906h89635p0.jpg',
这是由于网页编码的原因造成的,由于一开始使用utf-8
方式解码网页,并不能解码Unicode
:
response.encoding = 'utf-8'
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
因此虽然可以通过以下方式获取原始地址:
url = 'images\u002Fresource\u002F2021\u002F05\u002F22\u002F90h013034p0.jpg'
decodeunichars = url.encode('utf-8').decode('unicode-escape')
但是我们可以通过response.encoding = 'unicode-escape'
进行更简单的解码,缺点是网页的许多中文字符会变成乱码,但是字不重要不是么?看图!
创建图片保存路径
为了下载图片,首先创建图片保存路径:
# 创建图片保存路径
if not os.path.exists(webp_file):
os.makedirs(webp_file, exist_ok=True)
if not os.path.exists(png_file):
os.makedirs(png_file, exist_ok=True)
图片下载
当我们使用另存为
选项时,发现格式为webp
,但是上述获取的图片地址为jpg
或png
,如果直接存储为jpg
或png
格式,会导致格式错误。
因此需要重新构建webp
格式的文件名:
name = img.split('/')[-1]
name = name.split('.')[0]
name_webp = name + '.webp'
由于获取的图片地址并不完整,需要添加网站主页来构建图片地址:
from urllib.request import urljoin
domain = 'https://img2.huashi6.com'
img_url = urljoin(domain,img)
接下来就是下载图片了:
r = requests.get(img_url,headers=headers)
if r.status_code == 200:
with open(name_webp, 'wb') as f:
f.write(r.content)
格式转换
最后,由于得到的图片是webp
格式的,如果希望得到更加常见的png
格式,需要使用PIL
库进行转换:
image_wepb = Image.open(name_webp)
image_wepb.save(name_png)
爬取结果展示
完整程序
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!