2024年最全突破次元壁障,Python爬虫获取二次元女友_色姑娘6

第3页链接为:

https://www.huashi6.com/tags/161?p=3

可以看出,不同页面网址仅改变了页面数字,因此可以构造如下模式,并使用循环,爬取所有页面:

url_pattern = "https://www.huashi6.com/tags/161?p={}"
for i in range(1, 20):
    url = url_pattern.format(i)

接下来,在爬取网页前,使用浏览器“开发者工具”,观察网页结构。首先尝试定位图片元素:

定位图片元素
于是自然想到使用find_all语法获取所有class=‘v-lazy-img v-lazy-image-loaded’的标签:

img_url = soup.find_all('img', attr={'class': 'v-lazy-img v-lazy-image-loaded'})

但是发现并未成功获取,于是经过进一步探索发现,其图片信息是在script元素中动态加载的:

图片信息
需要注意的是,在请求页面时,可以在构造请求头时,添加'Cookie'键值,但是没有此键值也能够运行。

headers = {
    'User-Agent':'Mozilla/5.0 (X11; Ubuntu; Linux x86\_64; rv:86.0) Gecko/20100101 Firefox/86.0',
    # 根据自己的情况修改Cookie值
    #'Cookie':''
}
url_pattern = "https://www.huashi6.com/tags/161"
response = requests.get(url=url, headers=headers)

页面解析

使用beautifulsoup解析页面,获取JS中所需数据:

results = soup.find_all('script')[1]

为了能够使用re解析获取内容,需要将内容转换为字符串:

image_dirty = str(results)

接下来构造正则表达式获取图片地址:

pattern = re.compile(item, re.I|re.M)

然后查找所有的图片地址:

result_list = pattern.findall(image_dirty)

为了方便获取所需字段,构造解析函数

def analysis(item,results):
    pattern = re.compile(item, re.I|re.M)
    result_list = pattern.findall(results)
    return result_list

打印获取的图片地址:

urls  = analysis(r'"path":"(.\*?)"', image_dirty)
urls[0:1]

发现一堆奇怪的字符:

'images\\u002Fresource\\u002F2021\\u002F06\\u002F20\\u002F906h89635p0.jpg',

这是由于网页编码的原因造成的,由于一开始使用utf-8方式解码网页,并不能解码Unicode

response.encoding = 'utf-8'
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')

因此虽然可以通过以下方式获取原始地址:

url = 'images\u002Fresource\u002F2021\u002F05\u002F22\u002F90h013034p0.jpg'
decodeunichars = url.encode('utf-8').decode('unicode-escape')

但是我们可以通过response.encoding = 'unicode-escape'进行更简单的解码,缺点是网页的许多中文字符会变成乱码,但是字不重要不是么?看图!

图片

创建图片保存路径

为了下载图片,首先创建图片保存路径:

# 创建图片保存路径
if not os.path.exists(webp_file):
    os.makedirs(webp_file, exist_ok=True)
if not os.path.exists(png_file):
    os.makedirs(png_file, exist_ok=True)

图片下载

当我们使用另存为选项时,发现格式为webp,但是上述获取的图片地址为jpgpng,如果直接存储为jpgpng格式,会导致格式错误。
图片格式因此需要重新构建webp格式的文件名:

name = img.split('/')[-1]
name = name.split('.')[0]
name_webp = name + '.webp'

由于获取的图片地址并不完整,需要添加网站主页来构建图片地址:

from urllib.request import urljoin
domain = 'https://img2.huashi6.com'
img_url = urljoin(domain,img)

接下来就是下载图片了:

r = requests.get(img_url,headers=headers)
if r.status_code == 200:
	with open(name_webp, 'wb') as f:
		f.write(r.content)

格式转换

最后,由于得到的图片是webp格式的,如果希望得到更加常见的png格式,需要使用PIL库进行转换:

image_wepb = Image.open(name_webp)
image_wepb.save(name_png)

爬取结果展示

爬取结果

完整程序

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值