最全人脸检测进阶:使用 dlib、OpenCV 和 Python 检测面部标记,字节跳动面试技巧

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在这篇博文的剩余部分,我将演示如何在图像中检测这些面部标记。

使用dlib、OpenCV和Python检测面部标记

=====================================================================================

这篇博文使用到了imutils库face_utils.py中的两个函数。

第一个实用函数是rect_to_bb,是“矩形到边框”的缩写:

def rect_to_bb(rect):

#获取dlib预测的边界并将其转换

#按照我们通常使用的格式(x,y,w,h)

#使用OpenCV

x = rect.left()

y = rect.top()

w = rect.right() - x

h = rect.bottom() - y

返回一个元组 (x, y, w, h)

return (x, y, w, h)

此函数接受一个参数rect,该参数假定为dlib检测器(即面部检测器)生成的边框矩形。

rect对象包括检测的(x,y)-坐标。

然而,在OpenCV中,我们通常认为边界框是“(x,y,width,height)”,因此为了方便起见,rect_to_bb函数将这个rect对象转换为4元组坐标。

第二,shape_to_np函数:

def shape_to_np(shape, dtype=“int”):

#初始化(x,y)-坐标列表

coords = np.zeros((68, 2), dtype=dtype)

#在68个面部标记上循环并转换它们

#到(x,y)-坐标的2元组

for i in range(0, 68):

coords[i] = (shape.part(i).x, shape.part(i).y)

#返回(x,y)坐标的列表

return coords

dlib面部标记检测器将返回一个包含面部标记区域68(x,y)坐标的形状对象。

使用shape_to_np函数,我们可以将这个对象转换成一个NumPy数组。

有了这两个辅助函数,我们现在就可以检测图像中的面部标记了。

图像


打开一个新文件,将其命名为facial_landmarks.py,然后插入以下代码:

import the necessary packages

from imutils import face_utils

import numpy as np

import argparse

import imutils

import dlib

import cv2

#构造参数解析器并解析参数

ap = argparse.ArgumentParser()

ap.add_argument(“-p”, “–shape-predictor”, required=True,

help=“path to facial landmark predictor”)

ap.add_argument(“-i”, “–image”, required=True,

help=“path to input image”)

args = vars(ap.parse_args())

导入所需的Python包。

将使用imutils的face_utils子模块访问上面详述的助手函数。

然后将导入dlib。

解析我们的命令行参数:

–shape-predictor:这是通往dlib预先训练的面部标记检测器的路径。你可以在这里下载检测器模型,也可以使用本文的“下载”部分来获取代码+示例图像+预先训练过的检测器。

–image:我们要检测面部标记的输入图像的路径。

既然我们的导入和命令行参数已经处理完毕,让我们初始化dlib的面部检测器和面部标记预测器:

初始化dlib的人脸检测器(基于HOG)然后创建

面部标记预测器

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(args[“shape_predictor”])

初始化dlib的预训练人脸检测器,该检测器基于对用于对象检测的定向梯度标准直方图+线性SVM方法的修改。

然后使用提供的shape_predictor的路径加载面部标记预测器。

但是,在我们能够实际检测面部标记点之前,我们首先需要检测输入图像中的面部:

加载输入图像,调整大小,并将其转换为灰度

image = cv2.imread(args[“image”])

image = imutils.resize(image, width=500)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

在灰度图像中检测人脸

rects = detector(gray, 1)

通过OpenCV从磁盘加载我们的输入图像,然后通过调整图像大小使其具有500像素的宽度并将其转换为灰度来预处理图像。

处理检测图像中面的边界框。

探测器的第一个参数是我们的灰度图像(尽管这种方法也可以用于彩色图像)。

第二个参数是在应用检测器之前放大图像时要应用的图像金字塔层的数量(这相当于在图像上计算cv2.N次)。

在人脸检测之前提高输入图像分辨率的好处是,它可能允许我们检测图像中的更多人脸-缺点是输入图像越大,检测过程的计算成本就越高。

给定图像中人脸的(x,y)-坐标,我们现在可以对每个人脸区域应用人脸标记检测:

循环面部检测

for (i, rect) in enumerate(rects):

确定面部区域的面部标志,然后

将面部标志 (x, y) 坐标转换为 NumPy数组

shape = predictor(gray, rect)

shape = face_utils.shape_to_np(shape)

将 dlib 的矩形转换为 OpenCV 样式的边界框

[即(x, y, w, h)],然后绘制人脸边界框

(x, y, w, h) = face_utils.rect_to_bb(rect)

cv2.rectangle(image, (x, y), (x + w, y + h), (255, 255, 0), 2)

显示人脸编号

cv2.putText(image, “Face #{}”.format(i + 1), (x - 10, y - 10),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 2)

循环面部标志的 (x, y) 坐标

并将它们绘制在图像上

for (x, y) in shape:

cv2.circle(image, (x, y), 1, (0, 255, 0), -1)

显示带有人脸检测 + 人脸标记的输出图像

cv2.imshow(“Output”, image)

cv2.waitKey(0)

循环每个人脸检测。

对于每个人脸检测,给出68(x,y)-坐标,该坐标映射到图像中的特定人脸特征。

然后将dlib形状对象转换为具有形状(68,2)的NumPy数组。

绘制图像上检测到的人脸周围的边界框,绘制人脸的索引。

最后,在检测到的面部标记上循环并分别绘制它们。

将输出图像显示到屏幕上。

测试结果

打开终端输入:

python facial_landmarks.py --shape-predictor shape_predictor_68_face_landmarks.dat --image 11.jpg

image-20211128082116122

视频或摄像头


让我们继续开始这个面部标记的例子。这次调用摄像头

打开一个新文件,将其命名为 video_facial_landmarks.py ,并插入以下代码:

import the necessary packages

from imutils.video import VideoStream

from imutils import face_utils

import datetime

import argparse

import imutils

import time

import dlib

import cv2

导入需要的包。

然后,让我们解析命令行参数:

构造参数 parse 并解析参数

ap = argparse.ArgumentParser()

ap.add_argument(“-p”, “–shape-predictor”, required=True,

help=“path to facial landmark predictor”)

ap.add_argument(“-r”, “–picamera”, type=int, default=-1,

help=“whether or not the Raspberry Pi camera should be used”)

args = vars(ap.parse_args())

脚本需要一个命令行参数,然后是第二个可选参数,每个参数的详细信息如下:

–shape-predictor :dlib 的预训练面部标志检测器的路径。

–picamera :可选的命令行参数,此开关指示是否应使用 Raspberry Pi 摄像头模块而不是默认的网络摄像头/USB 摄像头。 提供一个 > 0 的值以使用您的 Raspberry Pi 相机。

现在我们的命令行参数已经解析完毕,我们需要初始化 dlib 的基于 HOG + 线性 SVM 的人脸检测器,然后加载面部标志预测器:

初始化dlib的人脸检测器(基于HOG)然后创建

面部标志预测器

print(“[INFO] loading facial landmark predictor…”)

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(args[“shape_predictor”])

下一个代码块简单地处理初始化我们的 VideoStream 并允许相机传感器预热:

初始化视频流并让相机传感器预热

print(“[INFO] camera sensor warming up…”)

vs = VideoStream(usePiCamera=args[“picamera”] > 0).start()

time.sleep(2.0)

我们视频处理管道的核心可以在下面的 while 循环中找到:

循环视频流中的帧

while True:

从线程视频流中抓取帧,将其调整为

最大宽度为 400 像素,并将其转换为

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值