大数据最全SparkSQL基本数据抽象RDD DataFrame Dataset介绍[附操作代码](2),2024年最新分分钟搞定

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

Spark SQL 对数据的封装主要体现在三个内置格式上:

  1. RDD
  2. DataFrame = Dataset[Row]
  3. Dataset

搞清楚这三者的关系,实际上只需要牢记:RDD是最为底层的数据管理结构,DataFrame和Dataset都是记录了列关系的数据管理结构

D

a

t

a

F

r

a

m

e

=

R

D

D

S

c

h

e

m

a

DataFrame = RDD+ Schema

DataFrame=RDD+Schema
其中Schema是一个StructType对象,StructType记录着所有数据StructField(key,value)的List对象。RDD在DataFrame中常常以case class的形式进行存储,Dataset与DataFrame的不同之处就在于这个case class对于Dataset来说不是一个具体的class而是一个spark内置定义的Row对象,Spark能够根据Row对象中存储的信息动态推断出字段的数据类型

D

a

t

a

F

r

a

m

e

=

D

a

t

a

s

e

t

[

R

o

w

]

DataFrame = Dataset[Row]

DataFrame=Dataset[Row]
因此,DataFrame和Dataset都握有相应的RDD,我们均可以通过二者的无参函数字面量rdd获取相应的RDD对象

1.3 转化关系

*

∗ 注:以下所有代码均默认运行在伪分布式hadoop集群-单机spark模式之下

1.3.1 RDD转DataFrame | Dataset

简单来说,就是 toDF() 以及 toDS() 两个方法,

1.3.2 DataFrame转Dataset

简单来说,就是**as[Bean]**方法,由于DataFrame会将Bean直接泛化成为Row对象,因此DataFrame转Dataset时需要显式指定Bean的相关类型,而反过来就直接使用 toDF() 即可
这个Bean实际上就是case class

1.3.3 DataFrame | Dataset转RDD

由于DataFrame | Dataset都握有相应的RDD对象,我们只需调用无参函数字面量rdd即可

1.3.4 Dataset转DataFrame

如前所述,使用 toDF() 即可,但是这个操作会丢失掉Bean的相应值而变成Row,当此DataFrame再转换回Dataset时,其Schema将会变为Row对象而不是之前的Bean对象。

2. DataFrame 数据导入

在这里,我们不使用spark-shell进行操作,而是直接通过自定义java程序连接spark集群提交spark任务

2.1 准备工作

pom.xml

首先, 我们需要构建相应的pom文件坐标,需要注意的是,如果我们使用spark连接MySQL,我们需要导入mysql-connector,如果我们需要连接hive,除去导入hive-metastore包外,还要同步导入spark-hive连接包

需要注意的是,由于spark中使用了slf4j的接口包,我们需要同步导入一个slf4j-nop的实现包,日志系统才能够正常运行

最后,为了scala文件能够正常编译,我们在build栏目下同步导入sbt支持包

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>spark-test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <spark.version>3.5.0</spark.version>
        <scala.version>2.13.8</scala.version>
        <hive.version>3.1.3</hive.version>
    </properties>

    <dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.13</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.13</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.scala-lang/scala-library -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.scala-lang/scala-reflect -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-reflect</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-nop</artifactId>
            <version>2.0.12</version>
            <scope>test</scope>
        </dependency>
        <!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.27</version>
        </dependency>

        <!-- spark hive compilation -->
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.12</artifactId>
            <version>${hive.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-metastore</artifactId>
            <version>${hive.version}</version>
        </dependency>

    </dependencies>
    <build>
        <finalName>${project.artifactId}</finalName>
        <outputDirectory>target/classes</outputDirectory>
        <testOutputDirectory>target/test-classes</testOutputDirectory>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <!--scala原始在sbt(类似java maven)上做开发,现可以用这个插件来在maven中进行开发-->
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>


![img](https://img-blog.csdnimg.cn/img_convert/5e909e19bf9dca8741744d6d17ae6a5c.png)
![img](https://img-blog.csdnimg.cn/img_convert/a1e7abaecd807c783afa4dfa2fb37f89.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

转存中...(img-zZZOEL2z-1715423278577)]
[外链图片转存中...(img-dyacBWzj-1715423278577)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值