由于需要相关的历史数据,经过对比东方财经网和网易财经网的相关网站页面,网易财经网对于我收集相关历史数据更加方便。
这边直接贴出来网易财经网获取股票历史数据的接口:
http://quotes.money.163.com/service/chddata.html?code=[code]&start=[yyyyMMdd]&end=[yyyyMMdd]&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOTURNOVER;VATURNOVER;TCAP;MCAP
接口中有三个核心参数,code表示股票编码,start表示开始时间,end表示结束时间,用python自动填充即可,调用起来非常方便。
通过Python调用网易财经的股票数据接口,获取上海/深圳A、B股近期成交量前10的共40家股票的历史数据,包含相关股票的开收盘情况、跌涨数据、换手率、成交数据、总市值、流通市值等关键数据指标。
直接贴出代码:
import urllib.request
import re
import glob
import time
‘’’
python学习交流群:1136201545更多学习资料可以加群获取
‘’’
上海、深圳A/B股票,近期成交量前40支股票代码
allCodelist=[
‘601099’,‘601258’,‘600010’,‘600050’,‘601668’,‘601288’,‘600604’,‘600157’,‘601519’,‘600030’,#上海A股
‘900902’,‘900941’,‘900948’,‘900938’,‘900947’,‘900932’,‘900907’,‘900906’,‘900903’,‘900919’,#上海B股
‘000725’,‘300059’,‘002131’,‘300116’,‘002195’,‘002526’,‘002477’,‘000536’,‘300104’,‘000793’,#深圳A股
‘200725’,‘200160’,‘200018’,‘200037’,‘200488’,‘200168’,‘200468’,‘200058’,‘200012’,‘200625’ #深圳B股
]
for code in allCodelist:
print(‘正在获取%s股票数据…’ % code)
if (code[0] == ‘6’ or code[0]==‘9’):#A股
url = ‘http://quotes.money.163.com/service/chddata.html?code=0’ + code + \
‘&start=20180101&end=20190228&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOTURNOVER;VATURNOVER;TCAP;MCAP’
print(url)
else:#B股
url = ‘http://quotes.money.163.com/service/chddata.html?code=1’ + code + \
‘&start=20180101&end=20190228&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOTURNOVER;VATURNOVER;TCAP;MCAP’
print(url)
urllib.request.urlretrieve(url, ‘d:\股票\’ + code + ‘.csv’)#需要提前新建好D盘的“股票”目录,将数据写入csv文件
csvx_list = glob.glob(‘d:\股票\*.csv’)
print(‘总共发现%s个CSV文件’ % len(csvx_list))
time.sleep(2)
print(‘正在处理…’)
for i in csvx_list:
fr = open(i, ‘r’).read()
with open(‘csv_to_csv.csv’, ‘a’) as f:#合并csv文件
f.write(fr)
print(‘写入完毕!’)
完美运行,爬取时间不到15秒,成功获取到上海/深圳A、B股近期成交量前10的共40家股票,2018年1月1日到2019年2月28日的所有历史交易数据。
字段都很容易理解,不需要处理,直接做可视化分析!
第一步:导入数据
finebi能从很多种数据源导入数据:如Excel,CSV,XML,以及各类数据库(SQL Server,Oracle,My SQL等),两大主流开源平台(Hadoop,Spark)等等。最常用的方式是连接数据库和导入excel数据。这里直接导入excel。
数据准备—添加业务包,业务包是用来统一整理数据表的。创建好业务包之后,点击添加表,新建excel数据集。
就得到如下的数据明细。这里可以自动识别数据的字段类型,也可以修改字段类型。
第二步:可视化分析
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!