Java最全使用 DataX 实现数据同步(高效的数据同步工具),阿里java社招面试

总结

总的来说,面试是有套路的,一面基础,二面架构,三面个人。

最后,小编这里收集整理了一些资料,其中包括面试题(含答案)、书籍、视频等。希望也能帮助想进大厂的朋友

三面蚂蚁金服成功拿到offer后,他说他累了

三面蚂蚁金服成功拿到offer后,他说他累了

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

后面在网上查看后,发现 DataX 这个工具用来同步不仅速度快,而且同步的数据量基本上也相差无几。

一、DataX 简介

=============================================================================

DataX 是阿里云 DataWorks 数据集成 的开源版本,主要就是用于实现数据间的离线同步。 DataX 致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等 各种异构数据源(即不同的数据库) 间稳定高效的数据同步功能。

在这里插入图片描述

  • 为了 解决异构数据源同步问题,DataX 将复杂的网状同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源;

  • 当需要接入一个新的数据源时,只需要将此数据源对接到 DataX,便能跟已有的数据源作为无缝数据同步。

1.DataX3.0 框架设计


DataX 采用 Framework + Plugin 架构,将数据源读取和写入抽象称为 Reader/Writer 插件,纳入到整个同步框架中。

在这里插入图片描述

| 角色 | 作用 |

| :-- | :-- |

| Reader(采集模块) | 负责采集数据源的数据,将数据发送给 Framework。 |

| Writer(写入模块) | 负责不断向 Framework 中取数据,并将数据写入到目的端。 |

| Framework(中间商) | 负责连接 ReaderWriter,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。 |

2.DataX3.0 核心架构


DataX 完成单个数据同步的作业,我们称为 Job,DataX 接收到一个 Job 后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分、TaskGroup 管理等功能。

在这里插入图片描述

  • DataX Job 启动后,会根据不同源端的切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。

  • 接着 DataX Job 会调用 Scheduler 模块,根据配置的并发数量,将拆分成的 Task 重新组合,组装成 TaskGroup(任务组)

  • 每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader --> Channel --> Writer 线程来完成任务同步工作。

  • DataX 作业运行启动后,Job 会对 TaskGroup 进行监控操作,等待所有 TaskGroup 完成后,Job 便会成功退出(异常退出时 值非 0


DataX 调度过程:

  1. 首先 DataX Job 模块会根据分库分表切分成若干个 Task,然后根据用户配置并发数,来计算需要分配多少个 TaskGroup;

  2. 计算过程:Task / Channel = TaskGroup,最后由 TaskGroup 根据分配好的并发数来运行 Task(任务)

二、使用 DataX 实现数据同步

====================================================================================

准备工作:

  • JDK(1.8 以上,推荐 1.8)

  • Python(2,3 版本都可以)

  • Apache Maven 3.x(Compile DataX)(手动打包使用,使用 tar 包方式不需要安装)

| 主机名 | 操作系统 | IP 地址 | 软件包 |

| :-- | :-- | :-- | :-- |

| MySQL-1 | CentOS 7.4 | 192.168.1.1 | jdk-8u181-linux-x64.tar.gz datax.tar.gz |

| MySQL-2 | CentOS 7.4 | 192.168.1.2 | |

安装 JDK:下载地址(需要创建 Oracle 账号)

[root@MySQL-1 ~]# ls

anaconda-ks.cfg jdk-8u181-linux-x64.tar.gz

[root@MySQL-1 ~]# tar zxf jdk-8u181-linux-x64.tar.gz

[root@DataX ~]# ls

anaconda-ks.cfg jdk1.8.0_181 jdk-8u181-linux-x64.tar.gz

[root@MySQL-1 ~]# mv jdk1.8.0_181 /usr/local/java

[root@MySQL-1 ~]# cat <> /etc/profile

export JAVA_HOME=/usr/local/java

export PATH= P A T H : " PATH:" PATH:"JAVA_HOME/bin"

END

[root@MySQL-1 ~]# source /etc/profile

[root@MySQL-1 ~]# java -version

  • 因为 CentOS 7 上自带 Python 2.7 的软件包,所以不需要进行安装。

1.Linux 上安装 DataX 软件


[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz

[root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/

[root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin//._ # 需要删除隐藏文件 (重要)

  • 当未删除时,可能会输出:[/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件.

验证:

[root@MySQL-1 ~]# cd /usr/local/datax/bin

[root@MySQL-1 ~]# python datax.py …/job/job.json # 用来验证是否安装成功

输出:

2021-12-13 19:26:28.828 [job-0] INFO JobContainer - PerfTrace not enable!

2021-12-13 19:26:28.829 [job-0] INFO StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes | All Task WaitWriterTime 0.060s | All Task WaitReaderTime 0.068s | Percentage 100.00%

2021-12-13 19:26:28.829 [job-0] INFO JobContainer -

任务启动时刻 : 2021-12-13 19:26:18

任务结束时刻 : 2021-12-13 19:26:28

任务总计耗时 : 10s

任务平均流量 : 253.91KB/s

记录写入速度 : 10000rec/s

读出记录总数 : 100000

读写失败总数 : 0

2.DataX 基本使用


查看 streamreader --> streamwriter 的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter

输出:

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !

Copyright © 2010-2017, Alibaba Group. All Rights Reserved.

Please refer to the streamreader document:

https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md

Please refer to the streamwriter document:

https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md

Please save the following configuration as a json file and use

python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json

to run the job.

{

“job”: {

“content”: [

{

“reader”: {

“name”: “streamreader”,

“parameter”: {

“column”: [],

“sliceRecordCount”: “”

}

},

“writer”: {

“name”: “streamwriter”,

“parameter”: {

“encoding”: “”,

“print”: true

}

}

}

],

“setting”: {

“speed”: {

“channel”: “”

}

}

}

}

根据模板编写 json 文件

[root@MySQL-1 ~]# cat < test.json

{

“job”: {

“content”: [

{

“reader”: {

“name”: “streamreader”,

“parameter”: {

“column”: [ # 同步的列名 (* 表示所有)

{

“type”:“string”,

“value”:“Hello.”

},

{

“type”:“string”,

“value”:“河北彭于晏”

},

],

“sliceRecordCount”: “3” # 打印数量

}

},

“writer”: {

“name”: “streamwriter”,

“parameter”: {

“encoding”: “utf-8”, # 编码

“print”: true

}

}

}

],

“setting”: {

“speed”: {

“channel”: “2” # 并发 (即 sliceRecordCount * channel = 结果)

}

}

}

}

输出:(要是复制我上面的话,需要把 # 带的内容去掉)

在这里插入图片描述

3.安装 MySQL 数据库


分别在两台主机上安装:

[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel

[root@MySQL-1 ~]# systemctl start mariadb # 安装 MariaDB 数据库

[root@MySQL-1 ~]# mysql_secure_installation # 初始化

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDB

SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

Enter current password for root (enter for none): # 直接回车

OK, successfully used password, moving on…

Set root password? [Y/n] y # 配置 root 密码

New password:

Re-enter new password:

Password updated successfully!

Reloading privilege tables…

… Success!

Remove anonymous users? [Y/n] y # 移除匿名用户

… skipping.

Disallow root login remotely? [Y/n] n # 允许 root 远程登录

… skipping.

Remove test database and access to it? [Y/n] y # 移除测试数据库

… skipping.

Reload privilege tables now? [Y/n] y # 重新加载表

… Success!

1)准备同步数据(要同步的两台主机都要有这个表)

MariaDB [(none)]> create database course-study;

Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]> create table course-study.t_member(ID int,Name varchar(20),Email varchar(30));

Query OK, 0 rows affected (0.00 sec)

在这里插入图片描述

因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:

grant all privileges on . to root@‘%’ identified by ‘123123’;

flush privileges;

2)创建存储过程:

DELIMITER $$

CREATE PROCEDURE test()

BEGIN

declare A int default 1;

while (A < 3000000)do

insert into course-study.t_member values(A,concat(“LiSa”,A),concat(“LiSa”,A,“@163.com”));

set A = A + 1;

END while;

END $$

DELIMITER ;

在这里插入图片描述

3)调用存储过程(在数据源配置,验证同步使用):

call test();

4.通过 DataX 实 MySQL 数据同步


1)生成 MySQL 到 MySQL 同步的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter

{

“job”: {

“content”: [

{

“reader”: {

“name”: “mysqlreader”, # 读取端

“parameter”: {

“column”: [], # 需要同步的列 (* 表示所有的列)

“connection”: [

{

“jdbcUrl”: [], # 连接信息

“table”: [] # 连接表

}

],

“password”: “”, # 连接用户

“username”: “”, # 连接密码

“where”: “” # 描述筛选条件

}

},

“writer”: {

“name”: “mysqlwriter”, # 写入端

“parameter”: {

“column”: [], # 需要同步的列

“connection”: [

{

“jdbcUrl”: “”, # 连接信息

“table”: [] # 连接表

}

],

“password”: “”, # 连接密码

“preSql”: [], # 同步前. 要做的事

“session”: [],

“username”: “”, # 连接用户

“writeMode”: “” # 操作类型

}

}

总结:绘上一张Kakfa架构思维大纲脑图(xmind)

image

其实关于Kafka,能问的问题实在是太多了,扒了几天,最终筛选出44问:基础篇17问、进阶篇15问、高级篇12问,个个直戳痛点,不知道如果你不着急看答案,又能答出几个呢?

若是对Kafka的知识还回忆不起来,不妨先看我手绘的知识总结脑图(xmind不能上传,文章里用的是图片版)进行整体架构的梳理

梳理了知识,刷完了面试,如若你还想进一步的深入学习解读kafka以及源码,那么接下来的这份《手写“kafka”》将会是个不错的选择。

  • Kafka入门

  • 为什么选择Kafka

  • Kafka的安装、管理和配置

  • Kafka的集群

  • 第一个Kafka程序

  • Kafka的生产者

  • Kafka的消费者

  • 深入理解Kafka

  • 可靠的数据传递

  • Spring和Kafka的整合

  • SpringBoot和Kafka的整合

  • Kafka实战之削峰填谷

  • 数据管道和流式处理(了解即可)

image

image

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

问,个个直戳痛点,不知道如果你不着急看答案,又能答出几个呢?

若是对Kafka的知识还回忆不起来,不妨先看我手绘的知识总结脑图(xmind不能上传,文章里用的是图片版)进行整体架构的梳理

梳理了知识,刷完了面试,如若你还想进一步的深入学习解读kafka以及源码,那么接下来的这份《手写“kafka”》将会是个不错的选择。

  • Kafka入门

  • 为什么选择Kafka

  • Kafka的安装、管理和配置

  • Kafka的集群

  • 第一个Kafka程序

  • Kafka的生产者

  • Kafka的消费者

  • 深入理解Kafka

  • 可靠的数据传递

  • Spring和Kafka的整合

  • SpringBoot和Kafka的整合

  • Kafka实战之削峰填谷

  • 数据管道和流式处理(了解即可)

[外链图片转存中…(img-WqD6VJO0-1715337536465)]

[外链图片转存中…(img-FHqutOJG-1715337536465)]

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值