Python函数专题(函数的参数,不定长参数,参数的解包,函数的作用域,命名空间,递归函数(2)

Part 2

============================================================================

1. 函数的返回值


  • 返回值就是函数执行以后返回的结果

  • 通过return来指定函数的返回值

  • return后面可以跟任意对象,返回值甚至可以是一个函数

2. 文档字符串


  • help() 是Python中内置函数,通过help()函数可以查询Python中函数的用法。

  • 在定义函数时,可以在函数内部编写文档字符串,文档字符串就是对函数的说明。

例如:

‘’’

这个函数的功能是计算阶乘。

‘’’


3. 函数的作用域


  • 作用域(scope)

作用域指的是变量生效的区域

在Python中一共有两种作用域

  • 全局作用域

• 全局作用域在程序执行时创建,在程序执行结束时销毁

• 所有函数以外的区域都是全局作用域

• 在全局作用域中定义的变量,都是全局变量,全局变量可以在程序的任意位置进行访问

• 函数作用域

• 函数作用域在函数调用时创建,在调用结束时销毁。

• 函数每调用一次就会产生一个新的函数作用域。

• 在函数作用域中定义的变量,都是局部变量,它只能在函数内部被访问。

global关键字,用来在局部作用域内声明全局变量。global关键字必须写在声明的局部变量前,也就是说,在该局部作用域内,global前方不能出现其要声明的全局变量,否则会报错。

a = 1

def fun():

使局部作用域变为全局作用域的办法

a = 10 # a=10写在这里的话,会报错。

global a # 声明此处的变量a是全局变量

a = 10 # a的重新赋值

print(a)

def fun1():

print(a)

fun1()

fun() # 输出两个10

print(a) # 输出结果也为10


4. 命名空间


  • 命名空间实际上就是一个字典,是一个专门用来存储变量的字典

  • locals()用来获取当前作用域的命名空间

  • 如果在全局作用域中调用locals()则获取全局命名空间,如果在函数作用域中调用locals()则获取函数命名空间

  • 返回值是一个字典

  • globals() 可用来获取全局作用域的命名空间。

需要注意的是,此全局变量不是指所有定义过的变量,而是指全局作用域的变量,不含所有局部变量。初学者容易在这里顾名思义而走入误区。

  • 将locals()写在全局作用域的位置,也可以获取到全局作用域的命名空间。

a = 1

b = 2

c = 3

d = 4

def fun():

a = 5

b = 6

e = locals() # 获取局部作用域的命名空间

f = globals() # 获取全局作用域的命名空间

print(e) # 得到的结果为{‘b’: 6, ‘a’: 5}

print(f) # 得到的结果中’a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4, ‘fun’: <function fun at 0x000001FE90B61EA0>}等一些本地自带的变量…

pass

fun()

s = locals() # 获取当前作用域的所有变量,并且以一个字典的形式返回出来

print(s) # 结果同上边的 f


5. 递归函数


  • 递归是解决问题的一种方式,它的整体思想,是将一个大问题分解为一个个的小问题,直到问题无法分解时,在去解决问题

  • 递归式函数有2个条件

• 1. 基线条件 问题可以被分解为最小问题,当满足基线条件时,递归就不执行了

• 2. 递归条件 可以将问题继续分解的条件

举例,普通方法我们这样定义求阶乘函数:

def fun(n):

r = 1

for i in range(1, n + 1):

r *= i

return r

用递归的思想,则这样写:

def fun(n): # fun(n) 是为了求取n的阶乘

if n == 1:

return 1

return n * fun(n - 1)

掌握递归的思想,在算法的写作中是一件大有裨益的事情。


Part 3

============================================================================

1. 高阶函数


  • 接收函数作为参数,或者将函数作为返回值返回的函数就是高阶函数。

如,写一个能够筛选出序列中偶数的高阶函数。

def fun1(fn): # fn是函数的参数(形参) 形参等于实参 fn = fun2 a

list1 = []

for i in range(101):

if fn(i): # fn(i) = fun2(i)

list1.append(i)

return list1

def fun2(i):

if i % 2 == 0:

return True

print(fun1(fun2))


2. 闭包


  • 将函数作为返回值也是高阶函数我们也称为闭包。

  • 闭包的好处

通过闭包可以创建一些只有当前函数能访问的变量。

可以将一些私有数据藏到闭包中。

  • 行成闭包的条件

函数嵌套。

将内部函数作为返回值返回。

内部函数必须要使用到外部函数的变量。

定义一个外部函数

def fun_out(num1):

定义一个内部函数

def fun_inner(num2):

res = num1 + num2

return res

return fun_inner

这样就满足了闭包的三个要求。

再看另一种写法(不是闭包):

这种写法在内部函数中重现定义了num1,导致在调用时原先传入的num1被销毁,内部函数没有使用到外部函数的变量,所以这不是闭包。

def fun_out(num1):

定义一个内部函数

def fun_inner(num2):

num1 = 10

res = num1 + num2

print(res)

return res

print(num1) # num1依然为传入值1

fun_inner(1)

print(num1) # num1依然为传入值1

return fun_inner

f=fun_out(1) # f的功能成了计算 10 + num2 的值。

要想解决,可以在中间加上一个nonlocal关键字

nonlocal num1告诉解释器,这里使用的num1不是本地的num1,是外部变量num1。

def fun_out(num1):

定义一个内部函数

def fun_inner(num2):

nonlocal num1 # 告诉解释器,这里使用的不是本地的num1, 是外部变量的num1

num1 = 10

res = num1 + num2

print(res)

return res

print(num1)

fun_inner(1)

print(num1)

return fun_inner


3. 装饰器的引入


  • 我们可以直接通过修改函数中的代码来完成需求,但是会产生以下一些问题:

1.如果修改的函数多,修改起来会比较麻烦。

2.不方便后期的维护。

3.这样做会违反开闭原则(ocp)

• 程序的设计,要求开发对程序的扩展,要关闭对程序的修改

装饰器示例:

def fun(fn, *args):

print(‘函数开始执行’)

r = fn(*args)

print®

print(‘函数执行结束’)


4. 装饰器的使用


  • 通过装饰器,可以在不修改原来函数的情况下来对函数进行扩展。

  • 在开发中,我们都是通过装饰器来扩展函数的功能的。

  • 装饰器是一个特殊的闭包函数

这里写一个功能为 验证登录 的装饰器函数:

假如说这个装饰器是一个验证登录的装饰器

def old_fun(a):

def new_fun(*args, **kwargs): # 不定长参数, 不管你传多少参数,\

或者你传不传参数,我这个不定长参数都可以保证代码不会出错

print(‘函数开始执行’)

print(a())

a(*args, **kwargs)

print(‘函数执行结束’)

return new_fun

  • 装饰器语法糖写法:

@old_fun # 装饰器的语法糖写法: @old_fun = 'r = old_fun(fun)

def fun():

print(‘我是fun函数’)

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值