AI大模型的三大应用场景

中国信通院专家魏凯阐述了大模型技术如何打破领域限制,推动人工智能成为通才,涉及自动驾驶、气象科学、机器人等多个领域。他强调了大模型在TOC和TOB领域的应用潜力,以及规模化落地面临的挑战。学习大模型AI的关键阶段包括初级应用、高阶实战、模型训练和商业闭环,鼓励深入理解和实践以应对行业变革。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过去,人工智能往往局限于特定领域,而大模型凭借其强大的规模扩展性和多任务适应性,打破了这些壁垒,推动人工智能进入新的发展范式。大模型技术引领的新范式,正在推动人工智能走向“通才”,并加速其与各个行业的深度融合,催生众多创新应用场景,推动众多传统行业走向人工智能+。

4月27日,中国信通院人工智能研究所副所长魏凯在“算力中关村”技术成果对接交流专场活动上发表《人工智能+的广阔前景与落地之路》的主题演讲。他指出,**近年来,以Transformer为代表的大模型技术在语言、视觉等领域加速突破,推动人工智能进入了一个新的发展范式。**魏凯表示,人工智能进入到新的范式有几个特点,第一个特点是规模可扩展性强,第二是多任务适应性很强,第三是持续学习。

大模型在各个行业的突破,不仅仅在语言模型上,在其他领域的突破,更值得大家去重视,**大模型与行业知识深度融合,将催生众多创新应用场景,形成新的增长点。

魏凯表示,人工智能和行业融合的前景,也就是我们国家提出的人工智能+的场景,是非常丰富的。

两个方向来看,一个是TO C的,一个是TO B的。在消费端大模型应用中,办公、图片生成和对话类产品占比合计达60%,提升工作效率成为首要目标。TO B方向主要面向企业价值链的各个环节,包括研发、生产制造、经营管理、营销服务和智能产品等,大模型在这些领域都拥有巨大的应用空间,可以提升效率、降低成本,并推动产业升级。软件工程是 To B 领域应用的典型案例,大模型技术正在深刻改变软件行业,显著提升软件开发和测试的效率。

但大模型应用规模化落地仍存在诸多挑战,他强调,推动人工智能深度应用,应全面加强平台建设、数据治理、运营管理、风险管控四大支柱建设。

关于大模型和其他领域的融合,会上,魏凯具体指出了三个方向。

**其一是AI大模型在自动驾驶领域的应用。**特斯拉在美国开放了自动驾驶的第12版FSDV12,免费给大众使用一个月,这个技术是在去年的8月份就研发完成了,它的底层用的是Transformer,和ChatGPT是一个技术,不仅是特斯拉在做,上海人工智能实验室在文章上也证明了在端到端上来做Transformer也是可行的,这条路在深刻改变自动驾驶的技术路线。

数字开物查询公开信息获悉,上海人工智能实验室、武汉大学、商汤科技团队联合发表的论文《Planning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值