过去,人工智能往往局限于特定领域,而大模型凭借其强大的规模扩展性和多任务适应性,打破了这些壁垒,推动人工智能进入新的发展范式。大模型技术引领的新范式,正在推动人工智能走向“通才”,并加速其与各个行业的深度融合,催生众多创新应用场景,推动众多传统行业走向人工智能+。
4月27日,中国信通院人工智能研究所副所长魏凯在“算力中关村”技术成果对接交流专场活动上发表《人工智能+的广阔前景与落地之路》的主题演讲。他指出,**近年来,以Transformer为代表的大模型技术在语言、视觉等领域加速突破,推动人工智能进入了一个新的发展范式。**魏凯表示,人工智能进入到新的范式有几个特点,第一个特点是规模可扩展性强,第二是多任务适应性很强,第三是持续学习。
大模型在各个行业的突破,不仅仅在语言模型上,在其他领域的突破,更值得大家去重视,**大模型与行业知识深度融合,将催生众多创新应用场景,形成新的增长点。
魏凯表示,人工智能和行业融合的前景,也就是我们国家提出的人工智能+的场景,是非常丰富的。
两个方向来看,一个是TO C的,一个是TO B的。在消费端大模型应用中,办公、图片生成和对话类产品占比合计达60%,提升工作效率成为首要目标。TO B方向主要面向企业价值链的各个环节,包括研发、生产制造、经营管理、营销服务和智能产品等,大模型在这些领域都拥有巨大的应用空间,可以提升效率、降低成本,并推动产业升级。软件工程是 To B 领域应用的典型案例,大模型技术正在深刻改变软件行业,显著提升软件开发和测试的效率。
但大模型应用规模化落地仍存在诸多挑战,他强调,推动人工智能深度应用,应全面加强平台建设、数据治理、运营管理、风险管控四大支柱建设。
关于大模型和其他领域的融合,会上,魏凯具体指出了三个方向。
**其一是AI大模型在自动驾驶领域的应用。**特斯拉在美国开放了自动驾驶的第12版FSDV12,免费给大众使用一个月,这个技术是在去年的8月份就研发完成了,它的底层用的是Transformer,和ChatGPT是一个技术,不仅是特斯拉在做,上海人工智能实验室在文章上也证明了在端到端上来做Transformer也是可行的,这条路在深刻改变自动驾驶的技术路线。
数字开物查询公开信息获悉,上海人工智能实验室、武汉大学、商汤科技团队联合发表的论文《Planning