在 Meta 推出 Llama 3 大型语言模型 (LLM) 几天后,Microsoft 周二(4 月 23 日)推出了其“轻量级”AI 模型的最新版本——Phi-3-Mini。Microsoft 将 Phi-3 描述为一系列开放的 AI 模型,这些模型是目前功能最强大、最具成本效益的小型语言模型 (SLM)。
究竟什么是语言模型,SLM 与 LLM 有何不同?使用 SLM 开发 AI 应用程序有什么好处吗?我们解释一下。
什么是 Phi-3-mini?
Phi-3-Mini被认为是Microsoft计划发布的三款小型机型中的首款。据报道,在语言、推理、编码和数学等领域,它在各种基准测试中的表现优于相同大小和下一个尺寸的模型。
从本质上讲,语言模型是 ChatGPT、Claude、Gemini 等 AI 应用程序的支柱。这些模型在现有数据上进行训练,以解决常见的语言问题,例如文本分类、回答问题、文本生成、文档摘要等。
LLM 中的“大”有两个含义——训练数据的巨大规模;和参数计数。在机器学习领域,机器可以在没有指示的情况下自己学习事物,参数是机器在模型训练过程中学到的记忆和知识。它们定义了模型解决特定问题的技能。
Microsoft的 Phi-3-mini 有什么新功能?
Microsoft 的最新模型扩展了客户可用的高质量语言模型的选择,在他们构建生成式 AI 应用程序时提供了更实用的选择。Phi-3-mini 是一种 3.8B 语言模型,可在 Microsoft Azure AI Studio、HuggingFace 和 Ollama 等 AI 开发平台上使用。
人工智能在任何给定时间可以读取和写入的对话量称为上下文窗口,并以称为令牌的东西来衡量。根据 Microsoft,Phi-3-mini 有两种变体,一种具有 4K 上下文长度,另一种具有 128K 令牌。
借助更长的上下文窗口,模型更能够接收和推理大型文本内容,例如文档、网页、代码等。
解释 |AI 聊天机器人中的上下文窗口以及它们如何帮助提示调用
Phi-3-mini 是同类产品中第一个支持高达 128K 代币的上下文窗口的型号,对质量影响很小。该模型是指令调整的,这意味着它被训练为遵循用户给出的不同类型的指令。这也意味着该模型是“开箱即用的”。
Microsoft表示,在未来几周内,Phi-3系列将增加新型号,为客户提供更大的灵活性。Phi-3-small (7B) 和 Phi-3-Medium 将很快在 Azure AI 模型目录和其他模型库中提供。
Phi-3-mini 与 LLM 有何不同?
Phi-3-mini 是一种 SLM。简单地说,SLM 是大型语言模型的更精简版本。与 LLM 相比,较小的 AI 模型在开发和操作方面也具有成本效益,并且在笔记本电脑和智能手机等小型设备上表现更好。
根据 Microsoft 的说法,SLM 非常适合“资源受限的环境,包括设备上和离线推理场景”。该公司声称,这种模型适用于快速响应时间至关重要的场景,例如对于chabots或虚拟助手。此外,它们非常适合成本受限的用例,尤其是对于较简单的任务。
阅读 |Meta 迄今为止最复杂、功能最强大的大型语言模型 Llama 3 是什么?
虽然 LLM 是在大量通用数据上接受训练的,但 SLM 以其专业化而脱颖而出。通过微调,SLM可以针对特定任务进行定制,并在执行这些任务时实现准确性和效率。大多数 SLM 都经过有针对性的培训,与 LLM 相比,需要的计算能力和能量要少得多。
SLM 在推理速度和延迟方面也有所不同。其紧凑的尺寸允许更快的加工。它们的成本使它们对较小的组织和研究小组具有吸引力。
Phi-3 型号有多好?
Phi-2 于 2023 年 12 月推出,据报道与 Meta 的 Llama 2 等型号相当。Microsoft声称 Phi-3-mini 比其前辈更好,并且可以像比它大 10 倍的模型一样做出反应。
根据Microsoft分享的性能结果,Phi-3 型号在关键领域明显优于相同尺寸甚至更大的几款型号,包括 Gemma 7B 和 Mistral 7B。
Microsoft声称 Phi-3-mini 表现出强大的推理和逻辑能力。Microsoft在其博客中还表示,“ITC是一家总部位于印度的领先商业集团,正在利用Phi-3作为他们与Microsoft继续合作的一部分,为Krishi Mitra提供副驾驶,这是一款面向农民的应用程序,覆盖了超过一百万农民。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
