既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
二、算法分析
1、算法流程
- 流程图释义:
- 黄色序列是最终效果,可以看出该序列是从小到大的顺序;
- 蓝色是无序区,意思就是蓝色会一直往后遍历,选出最小值并把最小值放到蓝色区的开头,随后该块蓝色变为黄色,有序区加一,无序区减一。
2、具体步骤
- 首先,将第一个元素固定,从剩下的元素中找到最小值下标并与固定位置的元素值互换
- 同上,只不过固定第二个元素,最后互换的也是第二个位置与最小值下标的值
- 直到该序列被遍历结束,排序才会结束
- 值得注意的是,如果该序列长度为n,那么遍历n-1次即可,否则数组会溢出
三、代码实现
- 选择排序算法代码:
//直接选择排序
void dirChoose(int\* arr, int len)
{
for (int i = 0; i < len - 1; i++) {
int k = i;
for (int j = i + 1; j < len; j++) {
if (arr[j] < arr[k]) {
k = j;
}
}
if (k != i)//如果不等,说明存在无序区比固定位置的元素值小
{
int temp = arr[k];
arr[k] = arr[i];
arr[i] = temp;
}
}
}
- 辅助函数速览:
- 主函数调用速览:
四、时间复杂度分析
1、计算时间复杂度的一般步骤
- 这里要说一下分析时间复杂度的方法:
- 找程序中的基本语句
- 基本语句就是运行最多的那一行或者一段代码
- 分析基本语句的执行次数或者执行规律,写出时间复杂度
- 符合近似计算原则,常见的有O(1)、O(
n
n
n)、O(
l
o
g
2
n
log2n
log2n) 和 O(
n
2
n^{2}
n2)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!