- 博客(265)
- 收藏
- 关注
原创 技术思辨|AI Coding:经验壁垒正在失效,工具进化重塑编程
你能够将一个超级庞大的项目拆解成AI可以理解和逐步执行的细粒度任务,并预见在整合这些AI"零件"时可能出现的挑战和协同问题,这正是"1000倍杠杆"的起点。而"初生牛犊"则需要警惕,不能因为有了AI这个强大的工具就忽视了基础能力的培养、批判性思维的锻炼以及对问题本质的深入理解,否则可能永远停留在"能够使用AI的初学者"阶段,难以应对未来更复杂、更具挑战性的工作。能够洞察问题的本质,发现隐藏的关联,提出全新的思路,设计出AI都"想不到"的巧妙方案——这种源于人类灵感、直觉和想象力的创造力,是AI难以复制的。
2025-06-09 18:00:25
787
原创 全流程开源!高德3D贴图生成系统,白模一键生成真实感纹理贴图
我们团队自研的MVPainter系统,作为业内首个全流程开源的3D贴图生成方案,仅需一张参考图与任意白模,即可自动生成对齐精确、细节丰富、具备PBR属性的高质量贴图,全面提升3D内容生产效率与真实感表现,助力构建标准化、智能化的三维视觉基座。高质量数据构建与筛选流程:我们提出了一套自动化的数据筛选与增强Pipeline,针对公开3D数据中普遍存在的纹理缺失、光照,视角单一等问题,设计了贴图质量过滤、光照,视角增强等模块,用于构建一个高质量的多视角贴图训练集。
2025-06-05 17:56:03
1183
原创 高德地图应用OceanBase单元化构建下一代在线地图服务
IEEE International Conference on Data Engineering (ICDE) 是数据库和数据工程领域的顶级学术会议之一(与SIGMOD、VLDB并成为数据库三大顶会),自1984年首次举办以来,每年举办一次。ICDE涵盖广泛的主题,包括数据库系统及其架构、数据管理与存储、大数据技术与应用、数据挖掘与知识发现、数据流处理与实时分析、分布式与并行数据库、数据隐私与安全等。本届会议接收到1518份投稿,共有300篇论文被接收发表,此外还包括10场Tutorials,11场wor
2025-05-27 17:31:05
944
原创 解锁高德语音包新玩法:这个六一,用孩子的声音,导航你的世界
因此,我们设计了Teacher - Force蒸馏的方案,通过同时约束蒸馏模型预测的声学特征和真实声学特征及基础模型预测的声学特征之间的误差,确保模型既可以较低难度的学习基础模型的声学输出,也可以同时保证蒸馏模型尽可能接近真实声学特征输出。第一阶段,我们首先会基于数千位高质量录音人的数据训练一个声学基础模型,模型在训练时,会对语义信息和说话人信息进行特征分离,以确保我们通过大规模数据进行预训练时可以充分实现说话人信息和语义信息的解耦,确保模型在微调阶段仅需调整少量的参数,加速模型产出的速度。
2025-05-27 17:31:05
644
转载 从底层重构强化学习训练框架,高德开源新方法
通过将基于组内的决策动态直接纳入标准的PG方法,GPG简化了训练过程,并显著减少了计算开销,而不削弱模型效果。这一突破为训练能够进行复杂推理的先进LLM提供了更高效的框架,从而为更具资源效率和可扩展性的人工智能系统做出了贡献。GPG开创性地从底层重构强化学习训练框架,仅需优化原始目标,解决已有方法偏差,提高训练效率。:首次揭示现有方法的奖励偏差问题,提出轻量化且高精度的梯度估计方案,显著提升策略稳定性。在一个组中,所有奖励都是0的简单问题的比例和所有奖励都是1的困难问题的比例。
2025-05-19 17:55:51
33
原创 IJCAI 2025 | 高德首个原生3D生成基座大模型「G3PT」重塑3D生成的未来
该模型通过单张图像即可生成高质量3D Mesh,其核心创新之处在于提出了Cross-scale Querying Transformer模块,实现了3D 数据的多尺度1D Tokenizer,并且引入了Next-scale Autoregressive架构,取代了传统GPT中的Next-token Autoregressive架构,从而巧妙地解决了3D数据无序性这一长期困扰自回归建模的关键难题。它有效地解决了3D数据的无序性和多分辨率特性带来的挑战,实现了从粗到细的高质量3D内容生成,并支持多种条件模态。
2025-05-12 17:38:58
759
原创 高德开源数字人核心引擎,打造真实可控的音频驱动数字人
此外,我们集成了一个运动强度调制模块,显式控制表情和身体运动的强度,使肖像运动的操控不仅限于唇部动作。然而,自然说话头生成不仅需要关注与音频直接相关的唇部运动,还需关注与音频特征弱相关的其他面部组件和身体部位的运动(如眉毛、眼睛和肩膀)。为了解决这些限制,我们提出了一种新颖的框架,利用预训练的视频扩散变换模型生成高保真、连贯的说话肖像,并具备可控的运动动态。在与Hallo3的对比中,Hallo3的输出存在明显缺陷,对比的结果中Hallo3出现面部/唇部畸变和虚假背景运动和僵硬的头部运动。
2025-05-08 17:55:52
589
原创 Tech Reader|高德技术人的灵感书单
在代码与算法的世界里,什么才是高德技术人「不迷路」的导航坐标?欢迎在评论区分享你对本期推荐书单的阅读心得或推荐你的灵感书单;在世界读书日,我们一起通过阅读校准下一段技术征程!答案或许藏在这份高德技术人的推荐书单里,选择5名粉丝随机送出本期推荐书籍!
2025-04-23 17:55:24
214
原创 ICASSP 2025|高德推理检测助手和创新图像生成模型实力出圈
为了解决这些挑战,我们提出了一种创新的图像编辑框架,它利用Chain-of-Thought(CoT)推理和多模态大语言模型(LLMs)的定位能力来帮助扩散模型生成更精致的图像。大量的实验表明,我们的模型在图像生成方面在定性和定量上都超越了现有最先进的模型。本文提出了一种创新的图像编辑框架,该框架结合了链式思考(Chain-of-Thought, CoT)推理和多模态大型语言模型(Multimodal Large Language Models, MLLMs)的区域定位能力,以协助扩散模型生成更精细的图像。
2025-04-21 17:55:31
1132
原创 CVPR 2025 Highlight|HumanRig:3D数字人黑科技,解锁更智能的3D角色动画框架
我们将分别介绍这些模块。这一优势主要归功于我们采用的基于Point Transformer的网格编码器,它能够有效区分不同身体部位的特征,从而生成更加精确的蒙皮权重分布,最终实现更高质量的网格变形效果。在这个过程中,我们确定粗略的三维骨架,通过计算每条射线与网格表面的交点,并使用每个三维粗略关节的第一次和最后一次交点的中点来得到结果。我们推出了一种创新的自动绑定算法,我们方法的核心模块包括:a)先验引导骨架估计器(PGSE),使用投射到3D空间中的2D先验初始化粗略骨架,显著降低绑定任务的复杂性。
2025-04-14 17:45:23
1228
原创 高德视觉技术中心团队携CVPR论文成果亮相China3DV 2025
在"优秀论文Fastforward"环节,论文第一作者储泽栋通过现场演示与理论解析,详细展示了HumanRig技术创新,此研究不仅填补了3D人形角色绑定领域的数据集空白,还提出一种创新的自动绑定算法,推动动画行业向更高效、更自动化的角色绑定方向发展。高德视觉技术中心始终站在计算机视觉研究与应用的创新高地,是高德空间智能互联网领域重要的技术实践者。作为三维视觉领域年度盛会,本次高德视觉技术中心的创新成果展示,不仅彰显了团队在计算机视觉领域的技术积淀,更为行业提供了数字内容生产的革新方案。
2025-04-14 17:45:23
328
原创 技术公益|高德「卫星求救」与「无网导航」,用技术开拓无人区
无网导航通过技术保障用户体验。高德用户会在某些位置发起请求,如果是网络原因导致的请求失败,那就可以识别出来这块区域网络不顺畅,如果大量用户都在这里发出网络请求失败信息,就形成了我们所说的无网区域,用户本次导航途经无网区域,高德APP会提前缓存导航数据至后台,以备不时之需。高德通过与各大手机厂商的合作,接入厂商卫星能力SDK,统一接口标准,构建了一套通用化卫星通信解决方案,以此借助手机的硬件能力,建立与卫星的双向通信,将救援信号发送至卫星的同时也能从卫星接收对救援信息的回复,实现整个卫星救援能力上的闭环。
2025-04-07 17:30:14
722
原创 高德2025科研课题正式发布,研究型实习生岗位等你加入!
对于导航/定位地图而言,主要需要从众包数据中提取场景中对导航和定位重要的少量的稳定的信息,实景地图包含显著更多的细节,端云交互可以以更高效的隐式表达进行(类似Nerual Map),场景中的对象的几何和外观都可能发生显著的变化,这是实现大规模实景地图的众包渐进式构建与更新的核心难点。近年来,多模态大模型的兴起为这一领域提供了新的技术手段。这些技术的应用使平台和商家能够充分利用AI智能创作的能力,可以根据用户的特性,生成个性化的素材或者内容,高效地产出多样性的视觉效果,从而带来了巨大的商业价值。
2025-03-27 17:00:55
711
原创 高德终端技术总结:高可用架构如何练成?
在技术栈设计上,除调用系统平台服务的部分使用原生语言(Java//OC//ArtTS)外,其他均使用跨平台语言,来实现最大限度的跨平台,其中对于高性能要求的能力(如地图引擎、基础库)使用C++实现,而对于高效率要求的能力(如前端页面)则使用JS实现。稳定性工作属于「流水不腐,户枢不蠹」。高德地图作为国民级应用,特别是出行场景的独特性,要确保在线导航高并发和交通安全级的超稳定性,这对技术团队提出异乎寻常的高要求,无论是终端、云端,还是“终端-云端”之间的连接,都必须实现“高可用、高性能、高效率”的技术目标。
2025-03-21 13:30:19
679
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
236
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
209
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
66
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
54
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
157
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
45
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
39
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
102
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
336
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
39
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
30
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
93
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
28
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
30
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
17
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
17
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
17
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
15
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
17
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
8
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
8
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
14
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
34
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
17
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
10
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人