- 博客(254)
- 收藏
- 关注
原创 IJCAI 2025 | 高德首个原生3D生成基座大模型「G3PT」重塑3D生成的未来
该模型通过单张图像即可生成高质量3D Mesh,其核心创新之处在于提出了Cross-scale Querying Transformer模块,实现了3D 数据的多尺度1D Tokenizer,并且引入了Next-scale Autoregressive架构,取代了传统GPT中的Next-token Autoregressive架构,从而巧妙地解决了3D数据无序性这一长期困扰自回归建模的关键难题。它有效地解决了3D数据的无序性和多分辨率特性带来的挑战,实现了从粗到细的高质量3D内容生成,并支持多种条件模态。
2025-05-12 17:38:58
369
原创 高德开源数字人核心引擎,打造真实可控的音频驱动数字人
此外,我们集成了一个运动强度调制模块,显式控制表情和身体运动的强度,使肖像运动的操控不仅限于唇部动作。然而,自然说话头生成不仅需要关注与音频直接相关的唇部运动,还需关注与音频特征弱相关的其他面部组件和身体部位的运动(如眉毛、眼睛和肩膀)。为了解决这些限制,我们提出了一种新颖的框架,利用预训练的视频扩散变换模型生成高保真、连贯的说话肖像,并具备可控的运动动态。在与Hallo3的对比中,Hallo3的输出存在明显缺陷,对比的结果中Hallo3出现面部/唇部畸变和虚假背景运动和僵硬的头部运动。
2025-05-08 17:55:52
533
原创 Tech Reader|高德技术人的灵感书单
在代码与算法的世界里,什么才是高德技术人「不迷路」的导航坐标?欢迎在评论区分享你对本期推荐书单的阅读心得或推荐你的灵感书单;在世界读书日,我们一起通过阅读校准下一段技术征程!答案或许藏在这份高德技术人的推荐书单里,选择5名粉丝随机送出本期推荐书籍!
2025-04-23 17:55:24
193
原创 ICASSP 2025|高德推理检测助手和创新图像生成模型实力出圈
为了解决这些挑战,我们提出了一种创新的图像编辑框架,它利用Chain-of-Thought(CoT)推理和多模态大语言模型(LLMs)的定位能力来帮助扩散模型生成更精致的图像。大量的实验表明,我们的模型在图像生成方面在定性和定量上都超越了现有最先进的模型。本文提出了一种创新的图像编辑框架,该框架结合了链式思考(Chain-of-Thought, CoT)推理和多模态大型语言模型(Multimodal Large Language Models, MLLMs)的区域定位能力,以协助扩散模型生成更精细的图像。
2025-04-21 17:55:31
1043
原创 CVPR 2025 Highlight|HumanRig:3D数字人黑科技,解锁更智能的3D角色动画框架
我们将分别介绍这些模块。这一优势主要归功于我们采用的基于Point Transformer的网格编码器,它能够有效区分不同身体部位的特征,从而生成更加精确的蒙皮权重分布,最终实现更高质量的网格变形效果。在这个过程中,我们确定粗略的三维骨架,通过计算每条射线与网格表面的交点,并使用每个三维粗略关节的第一次和最后一次交点的中点来得到结果。我们推出了一种创新的自动绑定算法,我们方法的核心模块包括:a)先验引导骨架估计器(PGSE),使用投射到3D空间中的2D先验初始化粗略骨架,显著降低绑定任务的复杂性。
2025-04-14 17:45:23
1141
原创 高德视觉技术中心团队携CVPR论文成果亮相China3DV 2025
在"优秀论文Fastforward"环节,论文第一作者储泽栋通过现场演示与理论解析,详细展示了HumanRig技术创新,此研究不仅填补了3D人形角色绑定领域的数据集空白,还提出一种创新的自动绑定算法,推动动画行业向更高效、更自动化的角色绑定方向发展。高德视觉技术中心始终站在计算机视觉研究与应用的创新高地,是高德空间智能互联网领域重要的技术实践者。作为三维视觉领域年度盛会,本次高德视觉技术中心的创新成果展示,不仅彰显了团队在计算机视觉领域的技术积淀,更为行业提供了数字内容生产的革新方案。
2025-04-14 17:45:23
284
原创 技术公益|高德「卫星求救」与「无网导航」,用技术开拓无人区
无网导航通过技术保障用户体验。高德用户会在某些位置发起请求,如果是网络原因导致的请求失败,那就可以识别出来这块区域网络不顺畅,如果大量用户都在这里发出网络请求失败信息,就形成了我们所说的无网区域,用户本次导航途经无网区域,高德APP会提前缓存导航数据至后台,以备不时之需。高德通过与各大手机厂商的合作,接入厂商卫星能力SDK,统一接口标准,构建了一套通用化卫星通信解决方案,以此借助手机的硬件能力,建立与卫星的双向通信,将救援信号发送至卫星的同时也能从卫星接收对救援信息的回复,实现整个卫星救援能力上的闭环。
2025-04-07 17:30:14
653
原创 高德2025科研课题正式发布,研究型实习生岗位等你加入!
对于导航/定位地图而言,主要需要从众包数据中提取场景中对导航和定位重要的少量的稳定的信息,实景地图包含显著更多的细节,端云交互可以以更高效的隐式表达进行(类似Nerual Map),场景中的对象的几何和外观都可能发生显著的变化,这是实现大规模实景地图的众包渐进式构建与更新的核心难点。近年来,多模态大模型的兴起为这一领域提供了新的技术手段。这些技术的应用使平台和商家能够充分利用AI智能创作的能力,可以根据用户的特性,生成个性化的素材或者内容,高效地产出多样性的视觉效果,从而带来了巨大的商业价值。
2025-03-27 17:00:55
625
原创 高德终端技术总结:高可用架构如何练成?
在技术栈设计上,除调用系统平台服务的部分使用原生语言(Java//OC//ArtTS)外,其他均使用跨平台语言,来实现最大限度的跨平台,其中对于高性能要求的能力(如地图引擎、基础库)使用C++实现,而对于高效率要求的能力(如前端页面)则使用JS实现。稳定性工作属于「流水不腐,户枢不蠹」。高德地图作为国民级应用,特别是出行场景的独特性,要确保在线导航高并发和交通安全级的超稳定性,这对技术团队提出异乎寻常的高要求,无论是终端、云端,还是“终端-云端”之间的连接,都必须实现“高可用、高性能、高效率”的技术目标。
2025-03-21 13:30:19
607
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
107
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
190
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
49
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
34
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
127
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
30
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
28
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
86
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
32
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
25
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
14
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
80
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
22
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
17
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
7
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
11
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
6
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
7
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
7
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
5
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
3
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
4
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
7
转载 CVPR 2025|突破自动驾驶“交规困境“:高德车道级交通规则在线理解,让AI更懂交规!
其中 MEE 模型专门用于对矢量地图进行特征编码,将每个矢量点进行 tokenize,使用 learnable query 配合 Intra & Inter Instance Attention 进行矢量特征的聚合,融合后每个 query 对应一条矢量的特征信息。高德认为,遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,理解交通标志牌中指示的。
2025-03-19 17:49:00
4
转载 高德ETA服务设计-如何快点吃上饭?
Part 1:洞察生活痛点——消解无尽排队之苦随着民众出行意愿的回暖,在游览景点、周末聚会等场合对餐饮的需求持续升温。然而,在繁华商圈及就餐高峰期,餐厅门前冗长的队伍成为了无可避免的现象,这不仅耗时费神,更严重影响了消费者的用餐体验。对此,高德设计团队敏锐洞察到这一用户痛点,构想出优化出行与到店排队服务方案,旨在让用户更快捷地享受美食,甚至实现“即达即食”的无缝对接体验。Part 2:智解问题之...
2024-03-06 17:41:30
305
原创 Android高性能高稳定性代码覆盖率方案原理解析
前言在《Android高性能高稳定性代码覆盖率方案技术实践》一文中,我们实现了高效稳定的代码覆盖率采集方案。不少同学对其背后原理非常感兴趣,甚至发私信来询问底层的理论支撑。为了方便大家了解其中原理,我们写下了这篇详细的解析文章,欢迎大家阅读探讨。方案中使用了新建ClassLoader,复制目标ClassLoader的classTable字段并进行类加载状态查询的方式,如图:为什么要采取这样的方式?...
2024-02-28 17:36:58
952
2
原创 2023高德技术热文盘点:15篇硬核解析
随着兔年即将落幕,充满无限可能的龙年即将到来,我们满怀期待迎接新的一年。感谢每位读者一直以来对【高德技术】的关注,是你们的持续关注和热心支持,让我们的旅程更加精彩。高德地图,作为国内数字地图、导航及位置服务的领军者,我们不断攀登技术高峰,持续追求技术创新,致力于提升用户的体验。本期,我们精心挑选了2023年高德技术公众号中最受欢迎的15篇文章,我们的技术团队在人工智能、架构设计、终端交互以及数据技...
2024-02-05 19:55:38
1584
转载 从一个crash问题展开,探索gcc编译优化
导读:问题分析的过程也正是技术成长之路,本文以一个gcc编译优化引发的crash为切入点,逐步展开对编译器优化细节的探索之路,在分析过程中打开了新世界的大门……背景:一个平平无奇的crash去年,客户提了个bug,并甩给了我们一个Segmentation fault截图,必现crash。这种必现问题我根本不慌的,段错误,无非就是use after free、越界读写等导致的非法内存访问而已。平平无...
2024-01-26 17:33:45
327
转载 干货!如何在高德地图上实现可视化图层合并渲染?
介绍高德最近对可视化图层组件做了优化,解决了不少问题,涉及到多个场景的合并渲染,后期效果的叠加渲染等等,笔者在这里总结了一些经验跟大家分享。在可视图层的开发过程中必须解决的一个问题就是多个场景(图层)的渲染,比如在地图上显示交通路线、区域范围、兴趣点3个场景,在视觉上是处于同个空间系统,又能够实现分层控制。最容易想到的办法就是为每个场景创建一个Canvas,并将Canvas标签叠加起来。这样做首先...
2024-01-11 17:52:24
1134
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人