网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
"新"能力:开发和调试效率都提升1****倍
架构升级了,能力也升级了,我觉得应该是正相关, 这个正相关带来了3个新能力呢,来看看有啥:
1**、工程框架引入软件包管理:**
整个引入软件包管理是个非常好的想法,真心的,如果大数据这方面能借鉴就好了,现在整个安装部署时间从原来的按天算,降低到现在30分钟内,而且还更易扩展,你说多带劲,也就是我们想跑让整个环境跑起来再也不用那么费劲的挨个搞环境了,这回使用安装管理的这个方式我们可以根据我们的具体需要求进行选择性的安装,仅仅安装我们需要的内容,30分钟内也就安装完毕了,我们可以进行我们的学习或者是测试工作了,你想想多方便,不然跑环境,你搭建了一天,啥结果看不到,你晚上的日报都不好写。
2**、感知模型与开发流程升级:**
开发效率是真真的提高了,因为说是新增更多丰富的核心算法模型的加持,这就跟贴bug一样呗,加速神符,编码神符,自动修正神符,便于开发者直接使用,自动识别关键技术门槛降低,开发变得更加简单。
我们都知道搞AI的很多的时候自认为是搞玄学的,但是我觉得只是我们的知识面还不够,当我们知识面够了的时候自然能解释这些玄而又玄的事物,例如新增的三个感知模型,分数绝对不低,而且不仅仅可以直接用平台提供的,还可以依据他们的提示进行自行炼丹,这玄学的东西,万一咱们突然就炼丹成功,九转金丹炸炉咱们也会是人生赢家,以后谁用咱们的模型都得心中拜服一下大佬。
我把三个感知模型列了一个表,这样看着能更直观。
序号 | 模型 | 功能介绍 |
1 | CenterPoint 点云障碍物模型 | CenterPoint Anchor-Free的三维物体检测器,在物体尺寸多样的复杂场景提供更高精度 |
2 | CaDDN 视觉障碍物模型 | CaDDN 预测图像中每个像素深度分布,结合⻦瞰投影达到较高 的检测精度。 |
3 | BEV PETR 视觉障碍物模型 | PETR 将 3D 坐标信息与图像特征相融合,实现了基于视觉的 360°障碍物感知。 |
3**、全新PnC工具链:**
看下图,官方说调试效率提升一倍,怎么就一倍了,我们来看看哈;调试,也就是最后的验证呗,去查的验证,验证这块凭啥这么快,在图的右侧可以看到是添加了Apollo Studio插件,我去查了一下,说是里面自带200个仿真场景,我们平时需要测试的环境都在,用这种环境直接跑肯定会快啊,我们自己模拟得模拟到那年去,如果这说的话提升效率可就不仅仅是一倍了。有场景管理,根据场景进行具体测试,而且测试直接就是仿真测试,不过也提供了下载到本地的测试。测试完成直接出测试报告,速度超快。
**“新”**社区:一站式学习实践
这个社区是我们学习的一块宝地,我们都知道自动驾驶技术是一个多学科、多技术交叉融合的产物,技术门槛高,学习难度大,实操成本高,是困扰个人开发者成长的难题。
在社区里为开发者提供学习实践、工具资源、技术交流等服务,很是方便,Apollo Studio应该是框架生态的一步大棋,正在打造一个专属于自动驾驶方向的一站式学习社区,那么以后这个社区就会有一个非常庞大基础的开发者们,我们可以在这里创造更多的价值。
如果是我,系更希望在比赛中能一显身手,作为程序工作者,谁还没有一个霸榜的梦想,不想当榜一的程序员不是好大哥,其实刚开始能力肯定不足,平台如果按照初中高三个级别开放比赛层级就好了。我们可以在云实验平台里面看到实验模式,服务器都是乌班图的,通用,实验步骤现在主流的那种,实验步骤给的是非常全的,学起来肯定不会很消耗时间。况且10万开发者已经上手,你还不相信自己的本事吗?
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**