# 每人100元,然后每人进行分钱
import random
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’] = [‘Arial Unicode MS’]
p = [100] * 100 # 设置个列表,每人有多少钱
ax = plt.subplot(1, 1, 1)
coin = 1
for d in range(1,1001): # 设置分钱次数
color = []
for i in range(100): # 每次分钱每人先扣一块钱
p[i] -= coin
for i in range(100): # 再将这100块钱随机分配到其他人身上
p[random.randint(0, 99)] += coin
for i in p:
if i <= 0:
color.append(“red”)
else:
color.append(“blue”)
ax.cla() # 清楚画面
ax.bar(range(100), p , width=0.9, color = color,alpha=0.5) # 画柱状图
plt.title(“第%d次分钱” % d) # 设置标题
plt.ylabel(“身价”)
plt.pause(0.01) # 设置暂停
plt.show()
行哥的个人理解是,在资源总和固定和分配概率固定的情况下,如果刚开始第一个人获得1块钱,第二个人失去1块钱,他们的差距是两块钱,第二个人财产想超过第一个人的概率呈指数递减,并且当分配的次数越多,二者的差距越大,反超概率越低
横向图来看
或者我们用折线图来展示,为了快速看出结果,修改分配的金钱基数为10块钱(即每次减去10块钱和每次随机获得10块钱)。我们可以从动图看到确实一开始有钱的越有钱,穷的越来越穷,虽然中间有所波折,但是也像极了我们的人生,大起大落落落落落落…
下图是第539次分配(分配金钱基数为1块钱),可以看到黄色和蓝色玩家从一开始的落后始终也没能翻身,紫色玩家即使大幅度家道中落也处在玩家的中间位置
破产能不能逆袭?
这里提高资金分配的基数为10,并对曾破产的玩家修改颜色为红色。从动图可以看出,曾经破产的玩家再逆袭是可以的,但是逆袭的玩家从数量和财富值来说都是不如一开始领先的玩家
出生不同
如果更贴近一下真实的世界,每个人出生的财产是不一样的。即使进行1000次财产分配,出生财产处于下层的依旧处于下层,出生财产处于上层依旧处于上层。不乏也有红色这样的上进派,希望通过自己的努力进入上层阶级,这需要时间,也需要运气。
政府补贴
当然政府是会保证人民的基本生活条件,所以我们设置参数当一个玩家再财富为0时,政府会主动给他补贴10。我们从下图可以看到紫色玩家展示了真正的落地反弹
生产力的发展
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!