深度学习常用性能评价指标

本文详细介绍了IT技术中的关键评估指标如精确率、召回率、特异性等,以及ROC曲线、AUC和Precision-Recall曲线的应用。同时涵盖图数据中的社区检测指标如NMI和模块度,以及在线学习资源和协作学习的重要性。
摘要由CSDN通过智能技术生成

精确率(precision)或阳性预测值(Positive Predictive Value, PPV):判断正确的结果占预测为positive的比例, P r e c i s i o n = T P T P + F P Precision= \frac{TP}{TP+FP} Precision=TP+FPTP​

灵敏度(Sensitivity)或称召回率(Recall)或真阳率(True Positive Rate, TPR):模型预测正确的个数占真实值为positive的比例, S e n s i t i v i t y = T P T P + F N Sensitivity= \frac{TP}{TP+FN} Sensitivity=TP+FNTP​

特异度(Specificity)或选择率(Selectivity)或真阴率(True Negative Rate, TNR):判断正确的个数占真实值为Negative的比例, S p e c i f i c i t y = T N T N + F P Specificity= \frac{TN}{TN+FP} Specificity=TN+FPTN​

阴性预测值(Negative Predictive Value, NPV):判断正确的结果占预测为negative的比例, N P V = T N T N + F N NPV= \frac{TN}{TN+FN} NPV=TN+FNTN​

假阴率(False Negative Rate, FNR):判断错误的个数占真实值为positive的比例, F N R = F N F N + T P FNR= \frac{FN}{FN+TP} FNR=FN+TPFN​

假阳率(False Positive Rate, F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值