软件测试最全逻辑回归分类器(linear_model,我就不信你还听不明白了

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

前言

在菜菜老师课件的基础上进行添加一些自己的理解,代码运行等作为学习笔记


逻辑回归分类器(linear_model.LogisticRegression)

class sklearn.linear_model.LogisticRegression (penalty=’l2’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100,multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)

1. 二元逻辑回归的损失函数

在学习决策树和随机森林时,我们曾经提到过两种模型表现:在训练集上的表现,和在测试集上的表现。我们建模,是追求模型在测试集上的表现最优,因此模型的评估指标往往是用来衡量模型在测试集上的表现的。然而,逻辑回归有着基于训练数据求解参数

θ

\theta

θ 的需求,并且希望训练出来的模型能够尽可能地拟合训练数据,即模型在训练集上的预测准确率越靠近100%越好。

因此,我们使用”损失函数“这个评估指标,**来衡量参数为

θ

\theta

θ的模型拟合训练集时产生的信息损失的大小,并以此衡量参数

θ

\theta

θ的优劣。**

  • 如果用一组参数建模后,模型在训练集上表现良好,那我们就说模型拟合过程中的损失很小,损失函数的值很小,这一组参数就优秀
  • 如果模型在训练集上表现糟糕,损失函数就会很大,模型就训练不足,效果较差,这一组参数也就比较差。

即是说,我们在求解参数

θ

\theta

θ 时,追求损失函数最小,让模型在训练数据上的拟合效果最优,即预测准确率尽量靠近100%。

损失函数

  • 衡量参数 的优劣的评估指标,用来求解最优参数的工具
  • 损失函数小,模型在训练集上表现优异,拟合充分,参数优秀
  • 损失函数大,模型在训练集上表现差劲,拟合不足,参数糟糕
  • 我们追求,能够让损失函数最小化的参数组合

注意:没有”求解参数“需求的模型没有损失函数,比如KNN,决策树

逻辑回归的损失函数是由极大似然估计推导出来的(相关推导过程在二元逻辑回归的损失函数),具体结果可以写作:

J

(

θ

)

=

i

=

1

m

(

y

i

log

(

y

θ

(

x

i

)

)

(

1

y

i

)

log

(

1

y

θ

(

x

i

)

)

)

J(\theta)=-\sum_{i=1}^{m}(y_i*\log(y_{\theta}(x_i))+(1-y_i)*\log(1-y_{\theta}(x_i)))

J(θ)=−i=1∑m​(yi​∗log(yθ​(xi​))+(1−yi​)∗log(1−yθ​(xi​)))

  • θ

:

\theta:

θ: 求解出来的一组参数

  • m

:

m:

m: 样本的个数

  • y

i

:

y_i:

yi​: 样本i上真实的标签

  • y

θ

(

x

i

)

:

y_{\theta}(x_i):

yθ​(xi​): 样本i上,基于参数

θ

\theta

θ计算出来的逻辑回归返回值

  • x

i

:

x_i:

xi​: 样本i各个特征的取值

**我们的目标,就是求解出使

J

(

θ

)

J(\theta)

J(θ) 最小的

θ

\theta

θ 取值**
注意:

  • 在逻辑回归的本质函数y(x)里,特征矩阵x是自变量,参数是

θ

\theta

θ

  • 在损失函数中,参数

θ

\theta

θ是损失函数的自变量,x和y都是已知的特征矩阵和标签,相当于是损失函数的参数

由于我们追求损失函数的最小值,让模型在训练集上表现最优,可能会引发另一个问题:如果模型在训练集上表示优秀,却在测试集上表现糟糕,模型就会过拟合。虽然逻辑回归和线性回归是天生欠拟合的模型,但我们还是需要控制过拟合的技术来帮助我们调整模型,对逻辑回归中过拟合的控制,通过正则化来实现。


2. 重要参数penalty & C

2.1 正则化

正则化是用来防止模型过拟合的过程,常用的有L1正则化L2正则化两种选项,分别通过在损失函数后加上参数向量

θ

\theta

θ 的L1范式和L2范式的倍数来实现。这个增加的范式,被称为“正则项”,也被称为"惩罚项"。损失函数改变,基于损失函数的最优化来求解的参数取值必然改变,我们以此来调节模型拟合的程度。其中L1范式表现为参数向量中的每个参数的绝对值之和,L2范数表现为参数向量中的每个参数的平方和的开方值。

J

(

θ

)

L

1

=

C

J

(

θ

)

j

=

1

n

θ

j

(

j

1

)

J(\theta)_{L1}=C*J(\theta)+\sum_{j=1}^{n}|\theta_j|~~~~(j\geq1)

J(θ)L1​=C∗J(θ)+j=1∑n​∣θj​∣    (j≥1)

J

(

θ

)

L

2

=

C

J

(

θ

)

j

=

1

n

(

θ

j

)

2

(

j

1

)

J(\theta)_{L2}=C*J(\theta)+\sqrt{\sum_{j=1}{n}(\theta_j)2}~~~~(j\geq1)

J(θ)L2​=C∗J(θ)+j=1∑n​(θj​)2

​    (j≥1)

  • J

(

θ

)

:

J(\theta):

J(θ): 之前提过的损失函数

  • C

:

C:

C: 用来控制正则化程度的超参数

  • n

:

n:

n: 方程中特征的总数,也是方程中参数的总数

  • j

:

j:

j: 代表每个参数 ( 在这里,j要大于等于1,是因为我们的参数向量

θ

\theta

θ中,第一个参数是

θ

0

\theta_0

θ0​,是我们的截距,它通常是不参与正则化的。)

在一些书和博客上可能会看见下面这种写法:

J

(

θ

)

L

1

=

J

(

θ

)

1

2

b

2

j

θ

j

J(\theta)_{L1}=J(\theta)+\frac{1}{2b^2}\sum_{j}|\theta_j|

J(θ)L1​=J(θ)+2b21​j∑​∣θj​∣

J

(

θ

)

L

2

=

J

(

θ

)

θ

T

θ

2

σ

2

J(\theta)_{L2}=J(\theta)+\frac{\thetaT\theta}{2\sigma2}

J(θ)L2​=J(θ)+2σ2θTθ​

这两种式子的本质是一样的,不过在大多数教材和博客中,常数项是乘以正则项,通过调控正则项来调节对模型的惩罚。而sklearn当中常数项C是在损失函数的前面,通过调控损失函数本身的大小,来调节对模型的惩罚。

在这里插入图片描述
L1正则化和L2正则化虽然都可以控制过拟合,但它们的效果并不相同。当正则化强度逐渐增大(即C逐渐变小),参数

θ

\theta

θ 的取值会逐渐变小,但L1正则化会将参数压缩为0,L2正则化只会让参数尽量小,不会取到0。

  • L1正则化在逐渐加强的过程中
    携带信息量小的、对模型贡献不大的特征的参数,会比携带大量信息的、对模型有巨大贡献的特征的参数更快地变成0,所以L1正则化本质是一个特征选择的过程,掌管了参数的“稀疏性”。L1正则化越强,参数向量中就越多的参数为0,参数就越稀疏,选出来的特征就越少,以此来防止过拟合。因此,如果特征量很大,数据维度很高,我们会倾向于使用L1正则化。由于L1正则化的这个性质,逻辑回归的特征选择可以由Embedded嵌入法来完成。
  • L2正则化在加强的过程中
    会尽量让每个特征对模型都有一些小的贡献,但携带信息少,对模型贡献不大的特征的参数会非常接近于0。通常来说,如果我们的主要目的只是为了防止过拟合,选择L2正则化就足够了。但是如果选择L2正则化后还是过拟合,模型在未知数据集上的效果表现很差,就可以考虑L1正则化。

而两种正则化下C的取值,都可以通过学习曲线来进行调整。

下面建立两个逻辑回归,来看一下L1正则化和L2正则化:
1.导入库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer #乳腺癌数据集
from sklearn.linear_model import LogisticRegression as LR #逻辑回归
from sklearn.model_selection import train_test_split #划分数据集
from sklearn.metrics import accuracy_score # 预测值和真实值之间的差距,就是准确率,评分

2. 导入数据
data = load_breast_cancer()

x = data.data
y = data.target

x.shape
>(569, 30)

在这里插入图片描述

3. 建立L1,L2两个正则化的实例化并训练
#solver='liblinear'和max\_iter=1000在下面详细讲解
lrl1 = LR(penalty='l1',solver='liblinear',C=0.5,max_iter=1000)
lrl2 = LR(penalty='l2',solver='liblinear',C=0.5,max_iter=1000)

lrl1.fit(x,y)
lrl2.fit(x,y)

4. 逻辑回归的重要属性coef_:查看每个特征所对应参数
  • L1正则化:
lrl1.coef_

在这里插入图片描述
找出特征的参数不为0的

lrl1.coef_ != 0

在这里插入图片描述
特征参数不为0的个数

(lrl1.coef_ != 0).sum()
>10

  • L2正则化
lrl2.coef_

在这里插入图片描述

可以观察出,当我们选择L1正则化的时候,许多特征的参数都被设置为了0,这些特征在真正建模的时候,就不会出现在我们的模型当中了,而L2正则化则是对所有的特征都给出了参数。

5. 使用学习曲线查看
l1 = []
l2 = []
l1test = []
l2test = []

xtrain, xtest, ytrain, ytest = train_test_split(x,y,test_size=0.3,random_state=500)

for i in np.linspace(0.05,1,19):
    lrl1 = LR(penalty='l1',solver='liblinear',C=i,max_iter=1000)
    lrl2 = LR(penalty='l2',solver='liblinear',C=i,max_iter=1000)
    
    #accuracy\_score就是获得评分
    #理解成将预测出的y和原本的y进行一个对比评分
    lrl1 = lrl1.fit(xtrain,ytrain)
    l1.append(accuracy_score(lrl1.predict(xtrain),ytrain))
    l1test.append(accuracy_score(lrl1.predict(xtest),ytest))
    
    lrl2 = lrl2.fit(xtrain,ytrain)
    l2.append(accuracy_score(lrl2.predict(xtrain),ytrain))
    l2test.append(accuracy_score(lrl2.predict(xtest),ytest))
    
graph = [l1,l2,l1test,l2test]
color = ['green','black','red','gray']
label = ['L1','L2','L1test','L2test']

plt.figure(figsize=[20,5])
for i in range(len(graph)):
    plt.plot(np.linspace(0.05,1,19),graph[i],color[i],label=label[i])
    
plt.legend(loc=4)#图例的位置在哪里?4表示,右下角
plt.show()

在这里插入图片描述
随着C的逐渐变大,正则化的强度越来越小,模型在训练集和测试集上的表现都呈上升趋势,对于L1直到C=0.8左右,训练集上的表现依然在走高,但模型在未知数据集上的表现开始不变,这时候就是容易出现了过拟合,对于L2,应选择C=0.2左右。

在实际使用时,基本就默认使用l2正则化,如果感觉到模型的效果不好,那就换L1试试看。


2.2 逻辑回归中的特征工程

当特征的数量很多的时候,我们出于业务考虑,也出于计算量的考虑,希望对逻辑回归进行特征选择来降维。比如,在判断一个人是否会患乳腺癌的时候,医生如果看5~8个指标来确诊,会比需要看30个指标来确诊容易得多。

2.2.1 业务选择

说到降维和特征选择,首先要想到的是利用自己的业务能力进行选择,肉眼可见明显和标签有关的特征就是需要留下的。当然,如果我们并不了解业务,或者有成千上万的特征,那我们也可以使用算法来帮助我们。或者,可以让算法先帮助我们筛选过一遍特征,然后在少量的特征中,我们再根据业务常识来选择更少量的特征。


2.2.2 PCA和SVD一般不用

说到降维,我们首先想到的是之前提过的高效降维算法,PCA和SVD,遗憾的是,这两种方法大多数时候不适用于逻辑回归。逻辑回归是由线性回归演变而来,线性回归的一个核心目的是通过求解参数来探究特征X与标签y之间的关系,而逻辑回归也传承了这个性质,我们常常希望通过逻辑回归的结果,来判断什么样的特征与分类结果相关,因此我们希望保留特征的原貌PCA和SVD的降维结果是不可解释的,因此一旦降维后,我们就无法解释特征和标签之间的关系了。当然,在不需要探究特征与标签之间关系的线性数据上,降维算法PCA和SVD也是可以使用的。


2.2.3 可以使用统计方法(非必要)

既然降维算法不能使用,我们要用的就是特征选择方法。逻辑回归对数据的要求低于线性回归,由于我们不是使用最小二乘法来求解,所以逻辑回归对数据的总体分布和方差没有要求,也不需要排除特征之间的共线性,但如果我们确实希望使用一些统计方法,比如方差,卡方,互信息等方法来做特征选择,也并没有问题。过滤法中所有的方法,都可以用在逻辑回归上。

统计学的思路是一种“先验”的思路,不管做什么都要先”检验“,先”满足条件“,事后也要各种”检验“,以确保各种数学假设被满足,不然的话,理论上就无法得出好结果。而机器学习是一种”后验“的思路,不管三七二十一,先让模型跑一跑,效果不好再想办法,如果模型效果好,不在意什么共线性,残差不满足正态分布,没有哑变量之类的细节,模型效果好大过天!


2.2.4 高效的嵌入法embedded(嵌入法详细看特征选择中的嵌入法

更有效的方法,毫无疑问会是我们的embedded嵌入法。我们已经说明了,由于L1正则化会使得部分特征对应的参数为0,因此L1正则化可以用来做特征选择,结合嵌入法的模块SelectFromModel,我们可以很容易就筛选出让模型十分高效的特征。注意,此时我们的目的是,尽量保留原数据上的信息,让模型在降维后的数据上的拟合效果保持优秀,因此我们不考虑训练集测试集的问题,把所有的数据都放入模型进行降维。

以乳腺癌数据集为例:

1.导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression as LR # 逻辑回归
from sklearn.model_selection import cross_val_score #交叉验证
from sklearn.datasets import load_breast_cancer #乳腺癌数据集
from sklearn.feature_selection import SelectFromModel #嵌入法特征选择

2. 数据的导入
data = load_breast_cancer()

x = data.data
y = data.target

x.shape
>(569, 30)

3. 使用逻辑回归进行评分(默认是l2正则化)

C使用的是上面2.1.5的得出的结论,0.2

LR_ = LR(solver='liblinear',C=0.2,random_state=500)
cross_val_score(LR_,x,y,cv=10).mean()

在这里插入图片描述

4. 使用嵌入法特征选择
#norm\_order=1说明使用的是L1范式,模型会删除在L1范式下面无效的特征
x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)

x_embedded.shape
>(569, 10)

cross_val_score(LR_,x_embedded,y,cv=10).mean()

在这里插入图片描述
可以看出,虽然分数下降了一点,但是特征还保留了10个,删除了20个特征,如果我们要求不高,在这里其实就可以停下了。但是,能否让模型的拟合效果更好呢?在这里,有两种调整方式

  • 调节SelectFromModel这个类中的参数threshold

这是嵌入法的阈值,表示删除所有参数的绝对值低于这个阈值的特征。现在threshold默认为None,所以SelectFromModel只根据L1正则化的结果来选择了特征,即选择了所有L1正则化后参数不为0的特征。

我们此时,只要调整threshold的值(画出threshold的学习曲线),就可以观察不同的threshold下模型的效果如何变化。一旦调整threshold,就不是在使用L1正则化选择特征,而是使用模型的属性.coef_中生成的各个特征的系数来选择。coef_虽然返回的是特征的系数,但是系数的大小和决策树中的feature_ importances_以及降维算法中的可解释性方差explained_vairance_概念相似,其实都是衡量特征的重要程度和贡献度的,因此SelectFromModel中的参数threshold可以设置为coef_的阈值,即可以剔除系数小于threshold中输入的数字的所有特征

#分别储存没使用嵌入法特征选择的x和使用嵌入法特征选择后的x
fullx = []
fsx = []

threshold = np.linspace(0,abs(LR_.fit(x,y).coef_).max(),20)

for i in threshold:
    x_embedded = SelectFromModel(LR_,threshold=i).fit_transform(x,y)
    
    #将未特征选择和进行特征选择的x,使用交叉验证得出评分
    fullx.append(cross_val_score(LR_,x,y,cv=10).mean())
    fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
    
    #输出threshold和其对应的剩余特征个数
    print(i,x_embedded.shape[1])
    
plt.figure(figsize=[20,5])
plt.plot(threshold,fullx,label='full')
plt.plot(threshold,fsx,label='feature selection')
plt.xticks(threshold)
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述
当threshold越来越大,被删除的特征越来越多,模型的效果也越来越差,可以看出,保存18个特征模型效果还可以,接下来进行学习曲线的优化

fsx = []
threshold = np.linspace(0,0.052,20)

for i in threshold:
    x_embedded = SelectFromModel(LR_,threshold=i).fit_transform(x,y)
    fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
    print(i,x_embedded.shape[1])
    
plt.figure(figsize=[20,5])
plt.plot(threshold,fsx)
plt.xticks(threshold)
plt.show()

在这里插入图片描述
在这里插入图片描述
如果要保证模型的效果比降维前更好,我们需要保留28个特征,这对于现实情况来说,是一种无效的降维:需要30个指标来判断病情,和需要25个指标来判断病情,对医生来说区别不大。

  • 第二种调整方法,是调逻辑回归的类LR_,通过画C的学习曲线来实现:
fullx = []
fsx = []

c = np.arange(0.01,10.01,0.5)

for i in c:
    LR_ = LR(solver='liblinear',C=i,random_state=500)
    #使用没用嵌入法降维的x
    fullx.append(cross_val_score(LR_,x,y,cv=10).mean())
    
    #使用嵌入法降维
    x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
    fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
    
#得出最高的评分及相应的C值
print(max(fsx),c[fsx.index(max(fsx))])

plt.figure(figsize=[20,5])
plt.plot(c,fullx,label='full')
plt.plot(c,fsx,label='feature selection')
plt.legend()
plt.show()

在这里插入图片描述
通过结果观察,在7.01左右取得最高,进一步优化学习曲线:

fullx = []
fsx = []

c = np.arange(6.05,7.05,0.005)

for i in c:
    LR_ = LR(solver='liblinear',C=i,random_state=500)
    #使用没用嵌入法降维的x
    fullx.append(cross_val_score(LR_,x,y,cv=10).mean())
    
    #使用嵌入法降维,使用L1范式来进行特征选择
    x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
    fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())

#得出最高的评分及相应的C值 
print(max(fsx),c[fsx.index(max(fsx))])

plt.figure(figsize=[20,5])
plt.plot(c,fullx,label='full')
plt.plot(c,fsx,label='feature selection')
plt.legend()
plt.show()

在这里插入图片描述
可以观察出,在C=6.06999999时评分为最高

5. 验证模型效果
  • 降维之前
LR_ = LR(solver='liblinear',C=6.069999999999999,random_state=500)
cross_val_score(LR_,x,y,cv=10).mean()

在这里插入图片描述

  • 降维之后
x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
cross_val_score(LR_,x_embedded,y,cv=10).mean()

在这里插入图片描述

  • 降维之后的特征数量
x_embedded.shape

在这里插入图片描述
这样我们就实现了在特征选择的前提下,保持模型拟合的高效,现在,如果有一位医生可以来为我们指点迷津,看看剩下的这些特征中,有哪些是对针对病情来说特别重要的,也许我们还可以继续降维。当然,除了嵌入法,系数累加法或者包装法也是可以使用的


2.2.5 比较麻烦的系数累加法

系数累加法的原理非常简单。在PCA中,我们通过绘制累积可解释方差贡献率曲线来选择超参数,在逻辑回归中我们可以使用系数coef_来这样做,并且我们选择特征个数的逻辑也是类似的:找出曲线由锐利变平滑的转折点,转折点之前被累加的特征都是我们需要的,转折点之后的我们都不需要。不过这种方法相对比较麻烦,因为我们要先对特征系数进行从大到小的排序,还要确保我们知道排序后的每个系数对应的原始特征的位置,才能够正确找出那些重要的特征。如果要使用这样的方法,不如直接使用嵌入法来得方便。


2.2.6 简单快速的包装法

相对的,包装法可以直接设定我们需要的特征个数,逻辑回归在现实中运用时,可能会有”需要5~8个变量”这种需求,包装法此时就非常方便了。不过逻辑回归的包装法的使用和其他算法一样,并不具有特别之处,因此在这里就不在赘述,包装法具体参考特征选择中的包装法


3. 梯度下降:重要参数max_iter

逻辑回归的数学目的是求解能够让模型最优化,拟合程度最好的参数

θ

\theta

θ 的值,即求解能够让损失函数

J

(

θ

)

J(\theta)

J(θ) 最小化的值。对于二元逻辑回归来说,有多种方法可以用来求解参数 ,最常见的有梯度下降法(Gradient Descent),坐标下降法(Coordinate Descent),牛顿法(Newton-Raphson method)等,其中又以梯度下降法最为著名。这些计算在执行的任务其实是类似的。

3.1 梯度下降求解逻辑回归

我们以最著名也最常用的梯度下降法为例,来看看逻辑回归的参数求解过程究竟实在做什么。现在有一个带两个特征并且没有截距的逻辑回归

y

(

x

1

,

x

2

)

y(x_1,x_2)

y(x1​,x2​),两个特征所对应的参数分别为

[

θ

1

,

θ

2

]

[\theta_1,\theta_2]

[θ1​,θ2​]。下面这个华丽的平面就是我们的损失函数

J

(

θ

1

,

θ

2

)

J(\theta_1,\theta_2)

J(θ1​,θ2​) 在以

θ

1

,

θ

2

\theta_1,\theta_2

θ1​,θ2​ 和 J为坐标轴的三维立体坐标系上的图像。现在,我们寻求的是损失函数的最小值,也就是图像的最低点。
在这里插入图片描述
在这个图像上随机放一个小球,当松手的时候,这个小球就会顺着这个华丽的平面滚落,直到滚到深蓝色的区域——损失函数的最低点。为了严格监控这个小球的行为,我让小球每次滚动的距离有限,不让他一次性滚到最低点,并且最多只允许它滚动100步,还要记下它每次滚动的方向,直到它滚到图像上的最低点。

可以想到,小球从高处滑落,在深蓝色的区域中来回震荡,最终停留在了图像凹陷处的某个点上。非常明显,我们可以观察到几个现象:

首先,小球并不是一开始就直向着最低点去的,它先一口气冲到了蓝色区域边缘,后来又折回来,我们已经规定了小球是多次滚动,所以可见,小球每次滚动的方向都是不同的。

另外,小球在进入深蓝色区域后,并没有直接找到某个点,而是在深蓝色区域中来回震荡了数次才停下。这有两种可能:1) 小球已经滚到了图像的最低点,所以停下了,2) 由于我设定的步数限制,小球还没有找到最低点,但也只好在100步的时候停下了。也就是说,小球不一定滚到了图像的最低处。

但无论如何,小球停下的就是我们在现有状况下可以获得的唯一点了。如果我们够幸运,这个点就是图像的最低点,那我们只要找到这个点的对应坐标

(

θ

1

,

θ

2

,

J

m

i

n

)

(\theta_1*,\theta_2*,J_{min})

(θ1∗​,θ2∗​,Jmin​),就可以获取能够让损失函数最小的参数取值

[

θ

1

,

θ

2

]

[\theta_1*,\theta_2*]

[θ1∗​,θ2∗​]了。如此,梯度下降的过程就已经完成。

在这个过程中,**小球其实就是一组组的坐标点

(

θ

1

,

θ

2

,

J

)

(\theta_1,\theta_2,J)

(θ1​,θ2​,J) ;小球每次滚动的方向就是那一个坐标点的梯度向量的方向**,因为每滚动一步,小球所在的位置都发生变化,坐标点和坐标点对应的梯度向量都发生了变化,所以每次滚动的方向也都不一样;人为设置的100次滚动限制,就是sklearn中逻辑回归的参数max_iter,代表着能走的最大步数,即最大迭代次数

**所以梯度下降,其实就是在众多

[

θ

1

,

θ

2

]

[\theta_1,\theta_2]

[θ1​,θ2​] 可能的值中遍历,一次次求解坐标点的梯度向量,不断让损失函数的取值

J

J

J逐渐逼近最小值,再返回这个最小值对应的参数取值

[

θ

1

,

θ

2

]

[\theta_1*,\theta_2*]

[θ1∗​,θ2∗​] 的过程。**


3.2 梯度下降的概念

那梯度究竟如何定义呢?在多元函数上对各个自变量求∂偏导数,把求得的各个自变量的偏导数以向量的形式写出来,就是梯度。比如损失函数

J

(

θ

1

,

θ

2

)

J(\theta_1,\theta_2)

J(θ1​,θ2​),其自变量是逻辑回归预测函数

y

θ

(

x

)

y_{\theta}(x)

yθ​(x)的参数

θ

1

,

θ

2

\theta_1,\theta_2

θ1​,θ2​ ,在损失函数上对

θ

1

,

θ

2

\theta_1,\theta_2

θ1​,θ2​求偏导数,**求得的梯度向量

d

d

d就是

[

J

θ

1

,

J

θ

2

]

T

[\frac{\partial J}{\partial \theta_1},\frac{\partial J}{\partial \theta_2}]^T

[∂θ1​∂J​,∂θ2​∂J​]T**,简称

g

r

a

d

J

(

θ

1

,

θ

2

)

grad J(\theta_1,\theta_2)

gradJ(θ1​,θ2​)或者

J

(

θ

1

,

θ

2

)

\nabla J(\theta_1,\theta_2)

∇J(θ1​,θ2​) 。在

θ

1

,

θ

2

\theta_1,\theta_2

θ1​,θ2​和

J

J

J的取值构成的坐标系上,点

(

θ

1

,

θ

2

,

J

)

(\theta_1*,\theta_2*,J)

(θ1∗​,θ2∗​,J)具体的梯度向量就是

[

J

θ

1

,

J

θ

2

]

T

[\frac{\partial J}{\partial \theta_1^*},\frac{\partial J}{\partial \theta_2*}]T

[∂θ1∗​∂J​,∂θ2∗​∂J​]T,或者

J

(

θ

1

,

θ

2

)

\nabla J(\theta_1*,\theta_2*)

∇J(θ1∗​,θ2∗​)。如果是3个参数的梯度向量,就是

[

J

θ

1

,

J

θ

2

,

J

θ

3

]

T

[\frac{\partial J}{\partial \theta_1},\frac{\partial J}{\partial\theta_2},\frac{\partial J}{\partial \theta_3}]^T

[∂θ1​∂J​,∂θ2​∂J​,∂θ3​∂J​]T,以此类推。

注意:
求解梯度,是在损失函数

J

(

θ

1

,

θ

2

)

J(\theta_1,\theta_2)

J(θ1​,θ2​)上对损失函数自身的自变量

θ

1

\theta_1

θ1​和

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

T**,简称

g

r

a

d

J

(

θ

1

,

θ

2

)

grad J(\theta_1,\theta_2)

gradJ(θ1​,θ2​)或者

J

(

θ

1

,

θ

2

)

\nabla J(\theta_1,\theta_2)

∇J(θ1​,θ2​) 。在

θ

1

,

θ

2

\theta_1,\theta_2

θ1​,θ2​和

J

J

J的取值构成的坐标系上,点

(

θ

1

,

θ

2

,

J

)

(\theta_1*,\theta_2*,J)

(θ1∗​,θ2∗​,J)具体的梯度向量就是

[

J

θ

1

,

J

θ

2

]

T

[\frac{\partial J}{\partial \theta_1^*},\frac{\partial J}{\partial \theta_2*}]T

[∂θ1∗​∂J​,∂θ2∗​∂J​]T,或者

J

(

θ

1

,

θ

2

)

\nabla J(\theta_1*,\theta_2*)

∇J(θ1∗​,θ2∗​)。如果是3个参数的梯度向量,就是

[

J

θ

1

,

J

θ

2

,

J

θ

3

]

T

[\frac{\partial J}{\partial \theta_1},\frac{\partial J}{\partial\theta_2},\frac{\partial J}{\partial \theta_3}]^T

[∂θ1​∂J​,∂θ2​∂J​,∂θ3​∂J​]T,以此类推。

注意:
求解梯度,是在损失函数

J

(

θ

1

,

θ

2

)

J(\theta_1,\theta_2)

J(θ1​,θ2​)上对损失函数自身的自变量

θ

1

\theta_1

θ1​和

[外链图片转存中…(img-39tvHaFj-1715571885114)]
[外链图片转存中…(img-i7r4GewC-1715571885115)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值