如何学ComfyUI?给新手的一点建议,以及分享几个免费工作流!

前言

根据我学ComfyUI的经历,总结一点小建议,也许你们可以少走一些弯路。

01

给新手的建议

刚开始学ComfyUI的小伙伴,尤其是一些没有SD基础的小伙伴。一般都是看了一个ComfyUI的炫酷的效果,强大的功能之后,兴冲冲得下载了安装包,然后下载一堆的工作流,打开软件拖入进来,然后是这样的

接下来就是一个接一个的节点缺失、运行报错,之后就进入了经典的从入门到放弃

所以真心给各位新手朋友几点建议

1、一点基础没有的,建议先学下Stable Diffusion的WebUI,熟悉了各种插件、模型再来学习ComfyUI,才能事半功倍。

2、先从简单的工作流开始,可以先用ComfyUI复刻之前SD做过的效果,这样会上手非常快。有点基础了可以多看看别人的工作流,学下思路。先复刻,再创新。

3、别看见几篇教程就要自己部署环境安装官方包,秋叶的包挺好用的!如果秋叶的包也不会弄,还可以去liblib用线上的工作流,基本的插件都有学习绝对够用了。别把精力全用在了解决报错上。

02

工作流分享

好了,分享几个有趣工作流吧

所有的AI设计工具,模型和插件,都已经整理好了,👇获取~在这里插入图片描述

万物冰淇淋效果

2

机械图标效果

3

玻璃图标效果


为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

### ComfyUI 工作流实例与教程 #### 使用 ComfyUI 构建图像生成工作流 ComfyUIStable Diffusion 的一种基于节点组装绘图流程的图形用户界面(GUI),允许用户通过连接不同类型的节点来创建复杂的图像生成工作流[^1]。 对于初者来说,理解如何设置基本的工作流至关重要。这里提供了一个简单的例子: ```python from comfyui import Node, Workflow # 创建输入节点 input_node = Node("Input") # 添加处理节点 process_node_1 = Node("ProcessImage", {"filter": "blur"}) process_node_2 = Node("AdjustColor", {"brightness": 0.5}) # 定义输出节点 output_node = Node("Output") # 组装成工作流 workflow = Workflow() workflow.connect(input_node, process_node_1) workflow.connect(process_node_1, process_node_2) workflow.connect(process_node_2, output_node) # 执行工作流 result_image = workflow.run(image_input) ``` 这段代码展示了如何定义并运行一个简单的工作流,其中包含了几个用于修改图片效果的关键步骤。 #### 面部细节增强的具体应用案例 另一个具体的例子涉及到了面部特征细化的功能实现。此功能利用了预训练模型对面部区域进行识别,并对其进行优化处理[^3]。以下是简化版的操作指南: 1. 加载基础图像作为输入; 2. 应用特定于人脸检测和分割的任务模块; 3. 对提取出来的人脸部分执行高分辨率重建算法; 4. 将改进后的脸部数据重新融入原始场景中完成最终渲染; 这种类型的应用程序非常适合那些希望提升人物肖像质量而不改变整体风格的设计者们使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值