Stable Diffusion的使用技巧和操作流程。 今天的内容包括:出图的基本操作、模型的下载使用说明。

现在我就将带领大家深入了解Stable Diffusion的使用技巧和操作流程。
今天的内容包括:出图的基本操作、模型的下载使用说明。
在这里插入图片描述

一、出图的基本操作

在出图之前,我们先来了解一下SD操作界面常用的一些功能
1、模型选择 :选择合适的大模型
2、文生图 :通过输入提示词,让AI生成图片
3、图生图 :在已经输入文字指令的基础上,通过一张参考图片,让AI根据提示词生成类似的效果。
4、附加功能
:提高生成图片的分辨率
5、提示词 :根据提示词在图片中输出对应的元素
6、反向词 :根据反向词在图片中不出现对应的元素
7、采样方法 :AI画图不同的算法,日常使用中,以下截图中的都可以进行选择
8、采样迭代步数:AI画图时,会有一系列的加噪和去噪的过程。迭代步数越多,图像越清晰。超过20之后幅度减小,耗时也更长。(电脑配置好一点的可以设置在25-30之间,配置稍微低一点的,设置在20-25之间)
9、高清修复:在较低宽高的图片生成后,进一步优化画质。
10、Refiner:风格重绘
11、宽高:设定图片分辨率
12、生成批次和每批数量:生成批次为每批次生成的图片张数,每次数量为生成多少批次。比如生成批次为3,每批数量为4,那么就会一共生成12张图片

13、提示词相关性:数值越高,AI生成的图片越靠近提示词。一般选用7-12较为合适。
14、随机种子:骰子表示随机生成图片,刷新箭头是依据上一张生成的图片继续创作。

出图步骤

①选择模型
目前模型的种类大致分为三种:写真系、二次元、2.5D(类似3D动漫效果)
获取模型的方法:
1)科学上网下载:https://civitai.com
2)国内下载地址:https://www.liblib.art (每天赠送300点数)
下载完模型之后放入之前介绍的models文件夹里的Stable-diffusion文件夹就可以了。
然后回到操作界面刷新就可以选择到了

在这里插入图片描述

②写提示词

1)提示词
提示词与Midjourney中的类似,想了解的朋友可以看看之前Midjourney有关出图提示词的内容。(目前SD只识别英文)。
2)反向词
想要图片效果更好的话,应该要加上反向词,也就是不希望图片中出现的东西。(有时候人物图片会出现多手多脚的情况)
反向词一般情况下都是通用的,下面是整理好的,复制进去就可以了。
在这里插入图片描述

③参数设置

根据常用功能的介绍进行配置就可以了。

以上步骤配置完之后就可以生成图片了。
在这里插入图片描述
我们来给个简单的提示词,看看效果吧。
提示词:一个漂亮的长发姑娘在河边看书

在这里插入图片描述
写真效果

在这里插入图片描述
二次元效果

二、模型的下载使用说明

1、模型下载:

作者是在https://civitai.com进行的模型下载
在下载的时候有个小技巧,如下步骤(使用的是chrome浏览器)

此方法适用于本地或云端部署。
①选择需要下载的模型点击Download按钮

在这里插入图片描述
②在chrome的下载界面,右键点击下载的文件,复制下载链接,然后去迅雷里面下载(网页下面很慢,迅雷下载速度起飞)
在这里插入图片描述

2、模型上传:

本地部署的SD有关模型的上传就不多说了,直接放在本地文件夹就行。

使用云端产品部署的话,模型的存放磁盘大小有一定的限制,如果超过了需要另外收费。

今天再给大家介绍下云端部署的时候,模型存放网盘的上传方式。

在上篇文章中介绍的4款云端部署的产品当中,经过亲测之后,比较推荐的是AutoDL产品,优势:
1、价格按照分钟计算,2、支持阿里云盘,模型上传方便。

其他产品问题:揽睿星舟在使用上1分钟就算1小时收费,性价比较低;其他2款产品只支持百度网盘,如果没有网盘会员下载模型及其慢。

操作步骤:

第一步:绑定网盘
在实例列表中点击AutoPanel

在这里插入图片描述
选择公共网盘,点击添加授权,进行阿里云盘授权

在这里插入图片描述
接着点击导出授权,将授权信息复制出来

在这里插入图片描述
最后点击菜单栏中的设置,选择公共网盘,将授权信息复制进去确认即可。
在这里插入图片描述

第二步:下载使用模型

在绑定完成之后,就可以下载阿里云盘中的模型了
在这里插入图片描述
点击下载,按照提示确认下载
下载完成之后,在autodl-tmp目录下就可以看到模型了

在这里插入图片描述
接着将模型剪切放入autodl-tmp/models/checkpoint目录下
在这里插入图片描述
最后去SD操作界面刷新一下,就可以选择模型啦

在这里插入图片描述
如果大家因为没有梯子或其他原因下载不了模型的,这里我将安装包和模型都打包好了直接分享出来

请添加图片描述

提示词

Stable Diffusion 最强提示词手册

  • Stable Diffusion介绍
  • OpenArt介绍
  • 提示词(Prompt) 工程介绍

在这里插入图片描述

第一章、提示词格式

  • 提问引导
  • 示例
  • 单词的顺序

在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

第二章、修饰词(Modifiers)

  • Photography/摄影
  • Art Mediums/艺术媒介
  • Artists/艺术家
  • Illustration/插图
  • Emotions/情感
  • Aesthetics/美学

在这里插入图片描述

在这里插入图片描述

第三章、 Magic words(咒语)

  • Highly detailed/高细节
  • Professional/专业
  • Vivid Colors/鲜艳的颜色
  • Bokeh/背景虚化
  • Sketch vs Painting/素描 vs 绘画

在这里插入图片描述

第四章、Stable Diffusion参数

  • Resolution/分辨率
  • CFC/提词相关性
  • Step count/步数
  • Seed/种子
  • Sampler/采样
  • 反向提示词(Prompt)

在这里插入图片描述

第5章 img2img(图生图),in/outpainting(扩展/重绘)

  • 将草图转化为专业艺术作品
  • 风格转换
  • lmg2lmg 变体
  • Img2lmg+多个AI问题
  • lmg2lmg 低强度变体
  • 重绘
  • 扩展/裁剪

第6章 重要提示

  • 词语的顺序和词语本身一样重要
  • 不要忘记常规工具
  • 反向提示词(Prompt)

第7章 OpenArt展示

  • 提示词 (Prompt)
  • 案例展示

篇幅有限,这里就不一一展示了,有需要的朋友可以点击下方的卡片进行领取!

请添加图片描述

### 使用 Stable Diffusion ControlNet 进行像扩展 为了利用 Stable Diffusion ControlNet 实现高质量的像扩展,以下是详细的说明: #### 准备工作 确保已经按照官方指南完成以下操作: - 安装 `sd-webui-controlnet` 插件[^1]。 - 下载所需的 ControlNet 模型,并将其放置于 `/models/ControlNet` 文件夹下[^2]。 插件安装完成后,在 WebUI 中可以找到对应的选项卡用于配置运行扩功能。 --- #### 控制模式设置 在使用 ControlNet 的过程中,需注意以下几个关键参数: - **控制模式选择**:推荐优先选用 `ControlNet` 作为主要控制器[^3]。 - **画面缩放模式**:通常建议选择“缩放并填充”,以便更好地适配新尺寸下的内容生成需求。 这些基础设定能够帮助保持原风格的一致性连贯性。 --- #### 输入目标尺寸 当准备调整原始片大小时, - 可手动指定期望的高度与宽度数值; - 或者借助界面工具——点击待处理素材右下角特定标(即最右侧的那个),自动提取当前选中形的实际分辨率数据填入对应字段内。 此步至关重要,因为它决定了最终输作品的整体布局比例以及细节呈现效果。 --- #### 提示词优化技巧 为了让生成结果更加贴近预期设想,在提交渲染请求之前务必精心设计 Prompt 文本字符串。特别是涉及复杂场景或者特殊环境描述的时候,应该尽可能详尽地补充关于背景要素的相关线索。例如,“黄昏时刻站在海边沙滩上的孤独人物剪影”。 --- #### 开始执行任务 一切准备工作就绪之后就可以按下启动键等待计算结束返回成品啦! 下面是 Python 脚本形式展示如何调用 API 接口来自动化上述流程的一个简单例子: ```python import requests from PIL import Image from io import BytesIO def expand_image_with_controlnet(image_path, prompt, width=768, height=512): url = 'http://localhost:7860/sdapi/v1/txt2img' # 假设本地服务端口号为7860 with open(image_path, "rb") as image_file: base64image = base64.b64encode(image_file.read()).decode('utf-8') payload = { "init_images": [base64image], "prompt": prompt, "width": width, "height": height, "controlnet_units": [{ "enabled": True, "module": "canny", "model": "control_canny-fp16", }] } response = requests.post(url, json=payload) r = response.json() for i in r['images']: image = Image.open(BytesIO(base64.b64decode(i.split(",",1)[0]))) return image expanded_img = expand_image_with_controlnet('./input.jpg', 'A beautiful landscape under sunset') expanded_img.save("./output_expanded.png") ``` > 注意:以上代码仅为示意用途,请依据实际部署情况修改相应路径服务地址等信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值