ComfyUI流程图、文生图、图生图步骤教学!

前言

leetcode , 209. 长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其总和大于等于 target 的长度最小的子数组
[numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

public int minSubArrayLen(int target, int[] nums) {
   int n = nums.length;
   if (n == 0) {
       return 0;
   }
   int ans = Integer.MAX_VALUE;
   int[] sums = new int[n + 1]; 
   //计算前缀和:sums[i] 表示 nums[0]~nums[i-1]的和
   for (int i = 1; i <= n; i++) {
       sums[i] = sums[i - 1] + nums[i - 1];
   }
   for (int i = 1; i <= n; i++) {
       int tmp = target + sums[i - 1];// target = sum[b]- sum[a];sum[b] = target + sum[a];
       int bound = Arrays.binarySearch(sums, tmp);//二分查找
       if (bound < 0) {
           bound = -bound - 1;
       }
       if (bound <= n) {
           ans = Math.min(ans, bound - (i - 1));
       }
   }
   return ans == Integer.MAX_VALUE ? 0 : ans;
}

1.jpg

流程图

在熟悉了ComfyUI的各种加载器、采样器、调节器、潜在空间、图像控制等节点后,现在要选用并添加合适的节点构建自己的工作流程图。
ComfyUI还提供了两种方式来加载流程图。

加载json

通过加载他人分享或者自己保存过的json文件(该json保存了流程图所有的节点及其连接信息),如下图所示:

加载原图

通过加载由ComfyUI生成的原图,如下图所示:

资源

对于刚开始不熟悉流程节点和连接信息,可以选择加载别人分享的示例,然后自己进行定制化修改
在ComfyUI的开源项目中给出了一些在不同场景下的例子,可以参考:

文生图

学习了基础的节点和流程图,利用现有的流程图,在C站上参考了一份提示词:
Prompt:
8k portrait of beautiful cyborg with brown hair, intricate, elegant, highly detailed, majestic, digital photography, art by artgerm and ruan jia and greg rutkowski surreal painting gold butterfly filigree, broken glass, (masterpiece, sidelighting, finely detailed beautiful eyes: 1.2), hdr, (detailed background window to a new dimension, plants and flowers:0.7) lora:more\_details:0.5 infinity, infinite symbol,
Negative prompt:
BadDream, FastNegativeV2
如下图:

生成的结果图,基本符合提示词。可能是没有使用相同模型的原因,与原图有较大的差别,但基本元素都有,原图如下:

图生图

图生图的流程图与上述文生图差不多,只是·将空白图像的输入换成了加载图像·。
选用了ComfyUI的默认图加上述提示词试了一下,效果不太理想,如下图:

·将denoise参数调到0.75·,再试一次,效果有所提升,但还是不符合预期:

这说明在写提示词时,应该也与输入图像有所关联,如图:

可以尝试验证下。

每日一算

leetcode , 238. 除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n) 时间复杂度内完成此题。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

  • 在这里插入图片描述

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

### ComfyUI 工作流解析 在ComfyUI中,成过程遵循一系列精心设计的工作流,确保用户能够高效创建高质量的像。此工具不仅支持基本的成功能,还提供了高级特性,如保存和恢复工作流的能力[^1]。 #### 初始化环境设置 启动ComfyUI应用程序后,默认界面呈现了一个直观易用的操作面板。该面板集成了多种节点(Node),这些节点代表不同的处理单元或功能模块。通过连接不同类型的节点,可以构建出复杂而灵活的工作流来满足特定需求。 #### 构建基础工作流 为了实现成任务,在画布上放置必要的输入节点(Input Node)作为起点。通常情况下,“Prompt”节点用于定义想要创作的主题描述;“Model Loader”负责加载预训练模型以供后续推理使用。“VAE Decoder”则是解码潜在空间表示至实际像素级输出的关键组件之一。 #### 高清放大部分 当涉及到对已有的低分辨率像进行放大操作时,采用Latent Upscale方法是一种常见做法。在此过程中,降噪参数的选择至关重要——过高可能导致细节丢失甚至失真变形;过低则可能无法有效去除噪声干扰,影响最终效果的质量[^2]。 ```python def upscale_image(image, noise_level=0.5): """ 使用指定的降噪级别调整给定片尺寸 参数: image (PIL.Image): 输入待缩放的小 noise_level (float): 控制去噪强度的比例因子 返回: PIL.Image: 放大后的高清晰度版本 """ from comfyui.nodes import LatentUpscalerNode upscaler = LatentUpscalerNode() result = upscaler.process(image=image, denoise_strength=noise_level) return result['output'] ``` #### 输出与管理元数据 值得注意的是,默认情况下所成的作品将会嵌入完整的制作历史记录即所谓的metadata。这意味着只要拥有这张原始文件,便可以在其他实例里精确重现整个创作流程。然而对于某些应用场景而言,这或许不是理想状态。因此平台也允许开发者自定义是否保留此类附加信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值