【comfyui教程】写给设计师的ComfyUI教程 :安装部署篇

前言

本篇主要讲解如何在PC电脑上安装部署.笔者已经花了一天时间做安装测试,请放心食用.

MAC电脑的部署可以搜索drawing things相关教程.如果电脑条件达不到,过几天我也会更新网络平台的使用.大家记得公众号首页三个点设置星标就可以收到推送啦

三个大模型

首先先科普下我们即将学习的三个大模型.这里把Stable Diffusion简称为SD,它们分别是

模型名称/占用大小/视觉效果

SD1.5 /4GB 嗯,还可以
SDXL /6.5GB 哎呦不错哦
Flux/16GB 窝草!

注意上面模型的占用大小,显存和内存是部署本地AI最重要的指标.就像一个货车,决定了可以装载模型的多少.比如说下面的最低配置是可以运行SD15的,SDXL比较勉强,Flux几乎不能.

也许大家可以在网上看到有低内/显存可以运行的Flux删减版模型,因为是删减版,效果并不好.不推荐.因为Flux需要单独的流程,后面会有单独讲解.

硬件要求

Comfyui配合英伟达显卡可以达到最佳性能.
非英伟达显卡或者AMD显卡的同学不推荐
对Cpu要求不高.

最低配置
(SD1.5流畅,SDXL勉强,FLUX删减版勉强运行)

6G显存英伟达显卡
16G内存

**流畅配置
(SD1.5流畅,SDXL流畅,flux稍吃力运行)
**12G显存英伟达显卡或者以上

32G内存

**终极配置
(全部流畅运行)
**24G显存英伟达显卡
64G内存
**
软件要求:
**需要魔法上网软件,下节课用到.(建议问问朋友,不要问我要,违法的)

Tips:如果不到最低配置,建议不要折腾.直接放弃.如果双十一配电脑,推荐 4060Ti 16G 显卡.3k多就可以买到16G显存的显卡,性价比极高.

**下载整合包

**网上很多Comfyui教程所谓下载即用是错误的,大家尽量把环境安装全,才可以不报错.省事的话直接下载我整合好的安装包,依次安装即可.

****Tips:最好全部默认安装路径,除非特别说明,全部默认选项,直接点NEXT安装即可
****整合包:

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

各项资源的原始地址,整合包已含.备用,无需下载

****●**英伟达驱动下载
**https://www.nvidia.cn/geforce/drivers/
下载安装后注意检查驱动程序是否会最新,如果已有也建议下载更新到最新版

****●**CUDA下载地址
**https://developer.nvidia.com/cuda-toolkit-archive

**Python下载地址,安装时最下面一项勾上
**https://www.python.org/downloads/release/python-3126/

Visual Studio下载地址

https://visualstudio.microsoft.com/zh-hans/

GIT下载地址
https://git-scm.com

****ComfyUI地址
****https://github.com/comfyanonymous/ComfyUI/releases


**
ComfyUI安装**

以上准备好之后,将安装包ComfyUI_windows_portable解压后
将这个文件夹放入一个大一些硬盘中(建议容量大于50G,固态硬盘最佳),注意路径一定不要有中文文件夹.
打开这个文件夹,找到run_nvidia_gpu.bat,打开会弹出一个代码框,然后自动会弹出一个网页,出现下面这个界面,就证明安装成功啦!

****Tips:将文件夹和这个启动文件,分别右键创建一个快捷方式,然后拖到桌面.会频繁用到.

Tips:注意浏览器收藏一下默认的本地的Comfyui网址: http://127.0.0.1:8188

**
模型安装

**如果看过第一篇文章可以知道,Comfyui安装成功之后,我们有了框架,还得需要大模型. 上面说了,大模型有三种主要模型,因为模型为开源,所以各路大神又基于这三个模型,训练了无数版本,称之为微调模型,微调模型一般好于基础大模型.

这里我给大家整理了四个模型,2个是原生的SD大模型,2个是我常用的SD微调模型dreamshaper.但是这四个模型命名都非常混乱,比如SD原生模型的命名为v1-5-pruned-emaonly.ckpt.为了方便同学们理解,我将他们统一改名:

比如

原生SD15.ckpt
原生SDXL.safetensors
dreamshaperSD15.safetensors
dreamshaperSDXL.safetensors

这样,看到模型名称就可以方便理解,比如dreamshaper系列的模型里面,dreamshaperSD15,是基于SD15的微调大模型.而另一个是基于SDXL的微调大模型.因为节点功能和模型版本需要一致,否则会报错.所以我们需要知道当前模型是基于什么大模型调试的.

**Tips:除非特别了解,新手一般建议不要改名

**

大家可以去整合包里面下载这四个模型,然后找到Comfyui的安装文件夹
ComfyUI_windows_portable/models/checkpoints将四个大模型拷贝进去即可.

Tips:安装任何模型和节点都需要重启Comfyui.
关掉浏览器,然后再重新点run_nvidia_gpu.bat启动即为重启操作.如果没有弹出页面,可以从上面的网址进入.

如何使用大模型和工作流,请看下面的视频

可以直接复制下面的提示词:

一个可爱的迪士尼风格的猫,开心的表情,大大的眼睛和耳朵.毛茸茸,穿着宇航服.房间,高质量照片
A cute Disney-style cat with a happy expression, big eyes and ears. Furry and wearing a space suit. Room, high-quality photo

Tips:微调大模型是比基础大模型在美学上做了一些调整,所以效果会比基础大模型要好很多.但是基础大模型决定了上限, 所以一般情况下视觉效果 FLUX>SDXL>SD15,微调大模型也是如此.

相信大家在使用这个工作流的时候会发现一些问题,比如,

**如何提高图片质量?
如何汉化?
如何安装管理节点?
如何生成特定风格的图片?

这就是我们下期学习的内容!
**

今天的课程到此为止.有问题评论区指出.安装成功记得来评论区报道!让我们一起分享成功的喜悦
**
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了
选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。**

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

### ComfyUI 安装部署教程 #### 选择合适的安装方式 对于希望快速上手的用户来说,可以考虑使用官方提供的整合包或是秋叶的一键启动器来进行安装[^2]。这些工具简化了许多复杂的配置过程,使得初学者能够更轻松地开始使用ComfyUI。 如果倾向于更加灵活可控的方式,则可以通过Docker实现一键安装部署。这种方式不仅操作简便快捷,而且能有效隔离运行环境,避免与其他软件发生冲突。 #### 准备工作 无论采用哪种方式进行安装,在此之前都需要确保计算机满足一定的硬件条件,并完成必要的前置准备工作: - **操作系统**:Windows、macOS 或 Linux 均可支持; - **Python 版本**:建议使用 Python 3.x 及以上版本; - **依赖库安装**:部分功能可能需要额外安装特定的 Python 库或其他依赖项; #### 使用 Docker 进行安装 以下是基于 Docker 的具体安装步骤: 1. 安装 Docker Engine 和 Docker Compose (适用于 Windows 用户还需安装 WSL2); 2. 下载项目源码或克隆 GitHub 上的相关仓库; 3. 修改 `docker-compose.yml` 文件中的参数设置以适应个人需求; 4. 执行命令启动容器: ```bash docker-compose up -d ``` 此时应该可以在浏览器中访问指定端口查看到已经成功运行的应用程序界面了。 #### 配置与优化 初次启动后还需要进一步调整一些选项来提升性能表现或者解锁更多高级特性。这包括但不限于加载自定义模型权重文件、启用 GPU 加速计算等功能模块。详细的说明文档通常会随同发布一起提供给开发者参考学习[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值