【comfyui教程】一键更换模特姿势,ComfyUI工作流分享

前言

一键更换模特姿势,ComfyUI工作流分享

在创意图像生成领域,ComfyUI 正成为一款不可忽视的神器。作为一款专为 Stable Diffusion 设计的基于节点的图形用户界面(GUI),它通过链接不同的模块(称为“节点”)来实现图像生成的高自由度和高度定制化。今天,我们就来分享一个精彩的 ComfyUI 工作流:一键更换模特姿势,让你的创作效率直线飙升!

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

什么是 ComfyUI?

简单来说,ComfyUI 是一款为图像生成爱好者量身打造的工具,它以轻量化、快速、高效著称。与传统工具相比,ComfyUI 不仅运行速度更快,对硬件的要求也相对较低,非常适合低配置设备使用。
更重要的是,它提供了一个独立的 GUI 界面,用户可以在本地环境中轻松构建和执行复杂的图像生成工作流,无需依赖其他平台或云端环境。

它的核心亮点包括:

  • 节点式操作:数据流清晰可见,构建逻辑直观。

  • 高度灵活性:支持高度自定义和工作流复用。

  • 易于分享:每个工作流文件都可复现,非常适合分享和交流。


ComfyUI 的节点工作流

在这个一键更换模特姿势的工作流中,节点是核心。以下是本次工作流中的 Primitive Nodes(基础节点)Custom Nodes(自定义节点)

基础节点(Primitive Nodes):

  • CLIPTextEncode:文本编码,解析提示词。

  • CLIPVisionLoader:加载 CLIP 模型以支持视觉操作。

  • LoadImage、SaveImage:图像加载与保存,支持快速输入输出。

  • UNETLoader、VAELoader:用于模型的加载和解码,支持高效生成。

自定义节点(Custom Nodes):

  • Image To Mask、GrowMask:处理图像遮罩,精准控制需要更改的区域。

  • BasicScheduler、DifferentialDiffusion:调度与扩散,调整生成策略。

  • RandomNoise:增加噪声,为模型生成提供更多随机性。

  • ImageCrop+、ImageBlendAdvance V2:裁剪和混合图像,提供更精细的图像操作。

  • LayerUtility: ColorPicker:为图像上色,进一步提升画面质感。


一键更换模特姿势的实现原理
  1. 导入图像:通过 LoadImage 节点加载目标模特图像。

  2. 生成遮罩:使用 Image To MaskGrowMask 节点标记需要修改的区域,例如模特的身体姿态。

  3. 应用扩散算法:借助 DifferentialDiffusion 节点对目标区域进行扩散生成。

  4. 更新姿势:结合 RandomNoise 节点,为模特重新生成姿势,并通过 CLIPTextEncode 调整提示词实现控制。

  5. 导出结果:生成图像后,通过 SaveImage 节点保存文件,同时可一键分享整个工作流文件。


为什么选择 ComfyUI?
  1. 上手容易,功能强大
    无论是新手还是高级用户,都能轻松驾驭 ComfyUI 的工作流。其模块化设计直观、灵活,特别适合尝试不同风格和效果。

  2. 社区支持强大
    作为开源项目,ComfyUI 的 GitHub 社区提供了丰富的资源。用户不仅可以获取最新的节点,还能下载他人分享的优秀工作流,省去了复杂调试的过程。

  3. 低配置友好
    对于硬件性能有限的用户来说,ComfyUI 无疑是绝佳选择。它在低配置设备上的表现依然流畅,让更多创作者能够体验图像生成的乐趣。


应用场景
  • 电商设计:快速更改模特姿势,实现多样化的产品展示。

  • 数字艺术:创作风格多变的插画和艺术作品。

  • 视频与动画制作:结合图片动画化功能,实现动态视觉效果。

ComfyUI 的一键更换模特姿势工作流,不仅让创作者能更高效地探索图像生成的可能性,还能大幅降低操作门槛。无论是对技术有深入研究的老手,还是刚接触 AI 图像生成的新手,ComfyUI 都提供了无与伦比的创作自由。
快试试这款神器,搭建属于自己的工作流吧!

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

### 一键换衣工作流概述 虚拟穿衣技术旨在生成目标人穿着给定服装的图像,这项技术能够显著改善消费者的购物体验,并降低服装商家的广告成本[^1]。具体到实现层面,该过程涉及多个复杂的子任务和技术模块。 #### 图像预处理阶段 在开始任何高级处理之前,输入的人体和衣物图片都需要经过初步调整以确保最佳匹配效果。这一步骤通常包括但不限于: - **人体姿态估计**:识别并标注出人体的关键部位位置(如肩膀、肘部等),以便后续步骤能更精准地贴合衣服。 - **衣物分割掩码提取**:利用语义分割算法区分衣物与其他背景元素,从而获得清晰的衣服轮廓图。 ```python import cv2 from mmpose.apis import inference_top_down_pose_model, init_pose_model def get_human_keypoints(image_path): pose_model = init_pose_model('mmpose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py', None) result = inference_top_down_pose_model(pose_model, image_path)[0]['keypoints'] return result ``` #### 对齐与变形 为了使新选中的服饰完美契合模特的身体曲线,在此环节会应用几何变换方法来调整衣物形状使之适应特定体型。常用的方法有: - **稠密对应场计算**:建立源模板(标准身材)同实际拍摄对象间的像素级映射关系; - **形变传递模型**:依据上述得到的关系指导待移植纹理发生相应扭曲变化,最终达到自然过渡的效果。 #### 合成渲染 最后也是最关键的部分就是将修改后的布料图案无缝融合进原始照片里去。这里可能涉及到的技术手段如下所示: - **多尺度对抗网络训练框架下的图像修复机制**:借助GAN强大的生成能力修补因替换而产生的瑕疵区域; - **色彩校正工具的应用**:保证整体色调一致性和视觉协调感不受影响。 IDM-VTON正是通过以上这些方式实现了即便是在复杂背景下以及不同姿势状态下也依然可以很好地保留住原有服饰特性的同时创造出高度真实的试穿效果图[^3]。 ComfyUI一键模特功能则进一步拓展了这一概念的应用范围,它不仅仅局限于改变所展示商品上的穿戴品样式,还可以便捷高效地完成整个场景内人物形象的整体替换作业而不失真不变形[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值