本地搭建Stable Diffusion,文生图再也不用求别人了!

前言

本地搭建Stable Diffusion,文生图再也不用求别人了

1. 简介

Stable Diffusion 是一种深度学习模型,用于生成高质量的图像。它基于一种名为扩散过程的生成方法,能够在给定条件的情况下生成具有丰富细节的图像。

看看本文的搭建步骤,成功部署 Stable Diffusion 模型,文生图从此不求人,不用找各种代理和第三方付费的资源了。

2. SD,启动!

(SD的提示词仅支持英文,用中文亲测了一点也不准确)

下面是同样的中文测试结果(中文提示词跑出来的过于恐怖奇葩,仅供图一乐):

我把启动和效果,放到了最前面,方便大家看看要不要继续看后面的详细部署的过程。

这是我针对自己电脑多次踩坑后测试出来的可启动的配置

python.exe D:\AI\stable-diffusion-webui-1.8.0\webui.py --opt-split-attention --enable-insecure-extension-access

亲测SD对于低显存还是比较友好的,像我这个机器,不知道为什么,就是不适用显卡进行计算,把我的内存都占满了。

看看哈,实际测试的结果,GPU只给我占了1G多,峰值也就不到3G;而内存给我快干爆了。

相对来说,执行计算也不是很慢,基本半分钟一张图吧。

3. 环境准备

在开始搭建 Stable Diffusion 模型之前,请确保您的计算机满足以下要求:

  • • 操作系统:我是Windows10,理论上Linux之类的应该好点儿

  • • GPU:NVIDIA GPU(本机是NVIDIA 1080 6G的老古董,最好是整个4090啊)

  • • CUDA:12.0 或更高版本

  • • cuDNN:11.0 或更高版本

  • • Python:3.8 或更高版本

  • • PyTorch:2.0 或更高版本

4. 下载代码

首先,把stable-diffusion-webui的代码下载下来

解压完成后,安装对应的依赖

5. 安装依赖项

接下来,安装 Stable Diffusion Webui中模型所需的依赖项。在代码仓库的根目录下,执行以下命令:

pip install -r requirements.txt

6. 下载预训练模型

模型的下载,是SD部署成功最关键的核心,我因为模型的问题,整了好久都没整出来,如果遇到错误,还是多百度百度。

Stable Diffusion 模型提供了预训练的权重,可以从官方提供的链接下载。下载完成后,将权重文件放置在代码仓库的 models\Stable-diffusion 目录下。

在我国的话还是直接从modelscope下载吧;有科学上网的话,也可以从huggingface官网或者其他第三方网站下载:https://civitai.com/

我是从这下载的

from modelscope import snapshot_download     model_dir = snapshot_download('AI-ModelScope/clip-vit-large-patch14')

7. 生成图像

打开网页,默认的模型还是差强人意,可以下载第三方的模型再试试

默认的模型生成的图像

第三方模型生成的图像,可以说,相当逼真了。

这里直接将该软件分享出来给大家吧~
在这里插入图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

### 使用 Stable Diffusion 实现文本生成视频的方法 #### 创建环境准备 为了实现从文本到视频的转换,首先需要搭建合适的开发环境。对于初学者来说,可以利用已经配置好的 GPU 服务器镜像来简化前期准备工作[^3]。这类镜像不仅包含了必要的依赖库和工具链,还预装了多个流行的 AI 模型及其优化版本。 #### 安装与设置 具体而言,在获取访问权限之后,用户可以直接启动带有预先安装软件包的 Docker 镜像或云平台实例。这些资源通常会提供详细的文档指导使用者完成初步设定过程,比如通过命令行界面执行特定脚本来加载最新的模型权重文件以及调整参数以适应个人创作需。 #### 利用现有框架 当一切就绪后,就可以着手探索 `stable-diffusion-videos` 这样的开源项目了[^2]。此项目的亮点在于它允许开发者通过对潜在空间(latent space)的研究来平滑过渡不同文字提示之间所对应的视觉效果变化序列,从而形成连贯流畅的画面流转。 ```bash # 克隆仓库并进入目录 git clone https://gitcode.com/gh_mirrors/st/stable-diffusion-videos.git cd stable-diffusion-videos/ # 安装依赖项 pip install -r requirements.txt # 下载预训练模型 python download_model.py # 启动服务端程序 python app.py ``` #### 开发流程概述 在此基础上,实际操作时一般遵循如下几个环节: - **输入处理**:接收来自用户的自然语言描述作为输入; - **特征提取**:将上述文本转化为适合喂给神经网络的形式; - **帧间插值**:依据前后两帧之间的差异计算中间状态,确保动作连续性; - **渲染输出**:最终合成完整的动画片段供查看下载。 值得注意的是,虽然整个过程中涉及到了不少技术细节,但是得益于社区贡献者们的努力,很多复杂的工作已经被封装进了易于调用的功能模块里去了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值