一文教你StableDiffusion图生图批量处理!

今天给大家讲解一下SD图生图的批量处理功能应该如何使用~

一、图生图批量处理功能的基本用法

首先打开webUI,在图生图页面下我们先找到批量处理的菜单:

最简单的批量处理方法只需要用到【输入目录】和【输出目录】两个功能:

第一步,需要建立一个输入目录的文件夹,大家注意不要用中文路径。

然后将要重绘的图片编号序号放到这个文件夹内:

接着我们将这个目录的路径粘贴到输入目录:

再建立一个文件夹用作输出图片用,注意路径也不要有中文:

将这个文件夹的路径粘贴到输出目录:

以上设置好之后我们就可以正常选择绘画模型,填写想要绘制的提示词和设置参数了。

例如我们想要重绘的是皮卡丘跳舞,那就在正向提示词中写入:一只皮卡丘在跳舞。

在下方设置重绘参数,注意重绘尺寸的宽高比例需要与重绘的图片一致:

最后我们点击生图,在输出的文件夹就会出现重绘后的图片了,注意如果输出文件夹没有出现重绘图,大家可以重新打开webUI尝试。

此时我们发现重绘的皮卡丘跟原图有点差异,为了提高重绘的精度,我们还需要学习下面这些进阶功能。

二、在批量处理中使用重绘蒙版

首先我们要了解什么是重绘蒙版?

重绘蒙版可以帮助我们更精细地控制重绘画面中元素的范围,例如我只想重绘皮卡丘而让图像的背景保持不变。

首先我们要用PS等软件给每张要重绘的图片绘制重绘蒙版(注意:白色区域是替换,黑色区域是保留不变的。)

将蒙版文件的目录贴入批量重绘蒙版目录 :

大家可以勾选这个Soft inpainting会让生成的图片过渡更加自然。

这张没有勾选能看到边缘过渡很硬~

这个勾选后的边缘就和缓多了。

最终我们在输出文件夹内就获得了我们用重绘蒙版获得的图片,可以看到背景跟原图基本保持了一致,只有皮卡丘被重绘了。

三、在批量处理中使用controlnet

为了让重绘的图片中皮卡丘的动作更加贴近原图,在这里我们还可以使用controlnet来批量重绘。

首先,打开controlnet点击启动、完美像素模式和上传独立控制的图像后选择批量处理,控制类型选择硬边缘,注意这里的目录可以先空着。

为了更好的控制图像,我们可以再增加一个controlnet,控制类型选择深度,输入目录同样不填。

然后我们回到上面的批量重绘那里,将原图的地址输入到这个controlnet输入目录这里:

最后我们就生成跟原图比较接近的重绘图像啦,经过测试,利用controlnet来批量重绘比重绘蒙版更方便效果也更好一些!

四、在批量处理中使用png图片信息

png图片信息适合当重绘不同的场景时使用。例如我们要重绘三张图,分别为一个皮卡丘、一棵树和一个初音未来:

然后针对这三个元素各自先用文生图生成一张图片:

**Prompt:**a pikachu,in the dance,best quality,masterpiece,best quality

**Prompt:**a tree,best quality,

masterpiece,HDR,UHD,8K,best quality,masterpiece

**Prompt:**hatsune miku,best quality,masterpiece,HDR,UHD,8K,best quality,masterpiece

将这三张携带有png信息的图片放置到一个文件夹内:

将目录填入png图片信息目录,打钩提示词、反向提示词、采样方法、迭代步数,并清空图生图的提示词 :

最后我们生图看一下效果:

原图

重绘后

原图

重绘后

原图

重绘后

今天的课程就到这里啦,后期精彩内容将持续更新,大家注意关注更新哦~

END


关注+星标,在线学习更多AIGC新工具!

扫描下方二维码获取超多AI前沿知识

在这里插入图片描述

近500G资料等你领取,包含但不仅限于Stable Diffusion、Midjourney、Fooocus:



写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
在这里插入图片描述

若有侵权,请联系删除

### 使用 Stable Diffusion API 像并保持脸部特征不变 为了在使用 Stable Diffusion API 像时保持脸部特征不变,可以通过调整特定参数和利用辅助工具来实现这一目标。 #### 调整 `Denoising Strength` 参数 `Denoising strength` 是控制算法对原始像内容保留程度的关键参数。较低的数值意味着更多的原始细节被保留,而较高的数值则会使成的结果更接近于全新的随机创作。对于希望保持脸部特征的情况,建议将此参数设置为较小值,通常介于 0.1 到 0.3 之间[^3]。 ```python from stable_diffusion_api import generate_image params = { "prompt": "A portrait of a person with clear facial features", "denoising_strength": 0.2, # Keep this value low to preserve face details } image = generate_image(params) ``` #### 应用 Adetailer 工具 Adetailer 可以帮助简化面部修复过程,在不手动绘制蒙版的情况下完成高质量的人脸增强工作。该插件能够自动检测并聚焦于人脸区域,从而确保这些部分不会受到过多干扰或变形。这使得即使是在较复杂的场景下也能有效维持主体面容的真实性[^2]。 ```python import adetailer face_params = { "model_name": "adetailer_model", # Specify the pre-trained model for faces } enhanced_face = adetailer.enhance(image, **face_params) ``` #### 结合 img2img 功能 当需要基于现有照片创建新版本而不显著改变其核心属性时,可以考虑采用 img2img 方法。这种方法允许用户上传一张源作为基础,并在此基础上应用文本提示和其他设定来进行微调式的再创造。这样既可以获得新颖的艺术效果又不至于丢失重要的视觉线索如人的面貌等。 ```python from stable_diffusion_api import img_to_img new_image_params = { "init_image": enhanced_face, "strength": 0.75, # Adjust based on how much you want to modify the original image "prompt": "Enhance the lighting and color while preserving the face" } final_image = img_to_img(new_image_params) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值