网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
concreteValue, ok := generic.(ConcreteType)
if ok {
concreteValue.SomeMethod()
}
}
#### 代码生成工具
除了使用接口和类型断言之外,我们还可以使用代码生成工具来实现泛型。代码生成工具可以根据我们指定的模板生成特定类型的代码。这样,我们可以根据需要生成不同类型的代码,从而实现对多种类型的支持。
一些常用的代码生成工具包括go generate、genny和gotemplate等。
#### 第三方库
另一个实现Golang泛型的方式是使用第三方库。一些开源库提供了泛型的实现,并提供了一些通用的数据结构和算法,以便我们可以更方便地处理不同类型的数据。
尽管这些库提供了一些泛型的功能,但我们仍然需要注意它们的性能和可维护性。由于它们使用了一些技巧来模拟泛型,所以可能会导致一些性能上的损失或代码可读性的下降。
### 泛型的局限性
尽管Golang泛型提供了一些好处,但它还有一些局限性。
#### 语法复杂性
Golang泛型的语法相对复杂,尤其是在使用代码生成工具时。这使得编写和维护泛型代码变得更加困难。此外,由于Golang的设计目标是简洁和易于阅读,官方团队对泛型的引入持保守态度。
#### 性能影响
尽管泛型可以提高代码的性能,但在某些情况下,它可能会导致性能下降。这是因为泛型通常会引入额外的类型检查和转换操作,这可能会增加代码的执行时间和内存消耗。
因此,在编写泛型代码时,我们需要权衡代码的性能和灵活性,并根据实际情况做出决策。
### 案例
为了更好地理解Golang泛型的应用,下面将介绍三个案例,展示了泛型在不同场景下的实际应用。
#### 案例一:通用的容器类型
在许多应用中,我们经常需要使用不同类型的容器来存储数据,例如数组、切片、队列等。使用Golang泛型,我们可以编写一个通用的容器类型,可以适用于不同类型的数据。
type Container[T any] struct {
data []T
}
func (c *Container[T]) Add(item T) {
c.data = append(c.data, item)
}
func (c *Container[T]) Get(index int) T {
return c.data[index]
}
在上面的例子中,我们定义了一个`Container[T]`类型,其中`T`是一个类型参数,表示容器中存储的数据类型。我们可以使用`Add`方法向容器中添加数据,并使用`Get`方法获取指定位置的数据。
使用泛型的容器类型,我们可以创建不同类型的容器实例,例如:
intContainer := Container[int]{}
intContainer.Add(1)
intContainer.Add(2)
fmt.Println(intContainer.Get(0)) // 输出:1
stringContainer := Container[string]{}
stringContainer.Add(“Hello”)
stringContainer.Add(“World”)
fmt.Println(stringContainer.Get(1)) // 输出:World
这样,我们可以方便地使用相同的代码来处理不同类型的容器。
#### 案例二:通用的排序函数
排序是一个常见的算法操作,我们经常需要对不同类型的数据进行排序。使用Golang泛型,我们可以编写一个通用的排序函数,可以适用于不同类型的数据。
func Sort[T comparable](arr []T) []T {
sorted := make([]T, len(arr))
copy(sorted, arr)
sort.Slice(sorted, func(i, j int) bool {
return sorted[i] < sorted[j]
})
return sorted
}
在上面的例子中,我们定义了一个`Sort[T comparable]`函数,其中`T`是一个类型参数,表示待排序数据的类型。我们使用`sort.Slice`函数对数据进行排序,并返回排序后的结果。
使用泛型的排序函数,我们可以对不同类型的数据进行排序,例如:
intArr := []int{3, 1, 2}
sortedIntArr := Sort(intArr)
fmt.Println(sortedIntArr) // 输出:[1 2 3]
stringArr := []string{“c”, “a”, “b”}
sortedStringArr := Sort(stringArr)
fmt.Println(sortedStringArr) // 输出:[a b c]
这样,我们可以方便地使用相同的排序函数来处理不同类型的数据。
#### 案例三:通用的线程池
在并发编程中,线程池是一种常用的技术,用于管理和复用多个线程。使用Golang泛型,我们可以编写一个通用的线程池,可以适用于不同类型的任务。
type Task[T any] func(T) error
type Pool[T any] struct {
tasks chan Task[T]
}
func (p *Pool[T]) AddTask(task Task[T]) {
p.tasks <- task
}
func (p *Pool[T]) Run(workerNum int) {
for i := 0; i < workerNum; i++ {
go func() {
for task := range p.tasks {
task()
}
}()
}
}
在上面的例子中,我们定义了一个`Task[T]`类型,表示要执行的任务,它接受一个参数并返回一个错误。然后,我们定义了一个`Pool[T]`类型,其中`T`是一个类型参数,表示任务的参数类型。我们使用通道来管理任务,并使用`Run`方法启动指定数量的工作线程来处理任务。
使用泛型的线程池,我们可以处理不同类型的任务,例如:
intTask := func(num int) error {
fmt.Println(num)
return nil
}
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新