Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)_anaconda配置python环境(1)

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

在项目A中需要用到某个Python库PkgA,且项目A的其他库要求PkgA的版本必须为v3.0以上,你按要求安装了PkgA v3.0;过了一段时间,老板交给你一个项目B,又用到了PkgA,但这次其他库要求PkgA的版本必须为v2.0及以上,这时候你怎么办?

安装PkgA v3.0则新项目B无法运行,安装PkgA v2.0则旧项目A无法运行,要想同时在一个环境里使用两个项目,必须不停地重装PkgA来更换版本。

上面的例子只涉及两个项目的一个依赖库冲突,如果多个项目呢?如果多个依赖冲突呢?

在这里插入图片描述
上面的例子说明了什么呢?其实就是Python语言的痛点:

  • 依赖网复杂

Python的包非常丰富,轮子相当多,开发者在工作时难免会调用这样或那样的包,久而久之,一个功能依赖另一个功能,形成复杂的依赖网络

  • 包管理混乱

通过报错信息不断安装依赖包终于解决了依赖库的问题,但随之而来的就是版本问题,也就是上面例子所体现的依赖冲突,本质上是某个包开发时的不向下兼容导致的

为了解决上面的问题,更好地管理Python库,让其扬长避短,就必须使用环境管理工具,例如本文介绍的Anaconda

2 什么是Anaconda?

Anaconda是一个开源的跨平台Python发行版本,支持

  • Windows
  • macOS
  • Linux

操作系统。Anaconda中包含了conda等180多个科学包及其依赖项。其中conda则是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。

在这里插入图片描述

3 Anaconda的安装

进入Anaconda下载界面选择相应的操作系统,本文主要介绍在Windows与Linux下的安装流程。

在这里插入图片描述

3.1 Windows系统

Windows有图形化的安装向导,按下面的步骤一步步安装即可

  • 运行安装向导

在这里插入图片描述

  • 选择I Agree

在这里插入图片描述

  • 选择All Users,其实选Just Me也可以,但这台主机的其他用户就无法使用Anaconda

在这里插入图片描述

  • 选择安装路径

在这里插入图片描述

  • 保持默认选项

在这里插入图片描述

  • 等待安装结束

在这里插入图片描述

  • 配置环境变量
    依次点击我的电脑->右键属性->点击高级系统设置->点击环境变量,之后按下图所示配置用户变量

在这里插入图片描述

3.2 Linux系统

对于Linux系统,没有图形化的安装界面,按下面输入终端命令即可

  • 进入Anaconda安装目录并运行官方安装程序
bash ./Anaconda3-2021.11-Linux-x86_64.sh

  • 添加环境变量,其中~/Project/anaconda3/bin替换成自己的安装目录
echo 'export PATH="~/Project/anaconda3/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc

3.3 测试

打开cmd(Windows)或Terminal(Linux),输入

conda --version

如果输出版本号则说明安装成功,如下所示。

在这里插入图片描述
注意,若运行python脚本时仍然是原环境而非Anaconda环境,则需要注意配置编辑器的python解释器路径。VSCode中,在tasks.json中的args参数中配置

{
    "version": "2.0.0",
    "tasks": [
        {
            "label": "catkin\_make:debug",
            "type": "shell",
            "command": "catkin\_make",
            "args": ["-DPYTHON\_EXECUTABLE=/home/winter/Project/anaconda3/envs/server/bin/python "],
            "group": {"kind":"build","isDefault":true},
            "presentation": {
                "reveal": "always"
            },
            "problemMatcher": "$msCompile"
        }
    ]
}

4 虚拟环境管理(速查字典)

Anaconda可以创建虚拟环境,虚拟环境间彼此隔离,可以解决依赖混乱的情况。虚拟环境管理主要涉及以下的命令,可以作为速查字典以备不时之需

  • 创建虚拟环境
conda create -n test python=3.8

创建了一个名为test的采用3.8版本Python解释器的虚拟环境

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值