网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 代码实现
#include<vector>
#include<iostream>
using namespace std;
namespace zyb
{
template<size_t N>
class bitset
{
public:
bitset()
{
_bs.resize(N / 32 + 1);
}
void set(const size_t& x)
{
size_t i = x / 32; // 第几个 int
size_t j = x % 32; // 这个 int 的第几个比特位
_bs[i] |= (1 << j); // 将这个 int 的第 j 个比特位变为 1
}
void reset(const size_t& x)
{
size_t i = x / 32; // 第几个 int
size_t j = x % 32; // 这个 int 的第几个比特位
_bs[i] &= ~(1 << j); // 将这个 int 的第 j 个比特位变为 0
}
bool test(const size_t& x)
{
size_t i = x / 32; // 第几个 int
size_t j = x % 32; // 这个 int 的第几个比特位
if ((_bs[i] & (1 << j)) != 0) return true;
return false;
}
private:
vector<int> _bs;
};
}
布隆过滤器
布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。
非整形的数据转化为整形,无论利用何种方式,都有可能会发生冲突的情况,发生冲突,在检测时就有可能会发生错误,这时候为了减小这种冲突带来的错误,就需要使用布隆过滤器。
布隆过滤器适用于非整形的数据,用多个哈希函数计算出多个整形值,统统映射到位图中,这样相当于一个数据在位图中就对应多个位置。当检测一个数据是否存在时,利用这几个哈希函数计算出对应于位图中的比特位位置,只有查看这些比特位都为1时,才算是这个数据存在,只要有一个位置不符合,就不存在!
总结:
分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
注意**:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可
能存在,因为有些哈希函数存在一定的误判**。比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
有一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。但这个支持删除的方式也有缺陷,无法确认元素是否真正在布隆过滤器中,并且还存在计数回绕的情况。
布隆过滤器优缺点
优点
-
- 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关
-
- 哈希函数相互之间没有关系,方便硬件并行运算
-
- 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
-
- 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
-
- 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
-
- 使用同一组散列函数的布隆过滤器可以进行交、并、差运算
缺点
-
- 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
-
- 不能获取元素本身
-
- 一般情况下不能从布隆过滤器中删除元素
-
- 如果采用计数方式删除,可能会存在计数回绕问题
布隆过滤器代码
它的实现是基于位图的。
struct BKDRHash
{
size_t operator()(const string& s)
{
// BKDR
size_t value = 0;
for (auto ch : s)
{
value *= 31;
value += ch;
}
if(value > 0xffffffff) value %= 0xffffffff;
return value;
}
};
struct APHash
{
size_t operator()(const string& s)
{
size_t hash = 0;
for (long i = 0; i < s.size(); i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));
}
}
if(hash > 0xffffffff) hash %= 0xffffffff;
return hash;
}
};
struct DJBHash
{
size_t operator()(const string& s)
{
size_t hash = 5381;
for (auto ch : s)
{
hash += (hash << 5) + ch;
}
if (hash > 0xffffffff) hash %= 0xffffffff;
return hash;
}
};
template<
size_t N,
class K= string,
class Hash1 = BKDRHash,
class Hash2 = APHash,
class Hash3 = DJBHash>
class bloomfilter
{
public:
void set(const K& key)
{
size_t i = BKDRHash()(key);
size_t j = APHash()(key);
size_t k = DJBHash()(key);
_biset.set(i);
_biset.set(j);
_biset.set(k);
}
bool test(const K& key)
{
size_t i = BKDRHash()(key);
size_t j = APHash()(key);
size_t k = DJBHash()(key);
if (_biset.test(i) && _biset.test(j) && _biset.test(k)) return true;
else return false;
}
private:
bitset<N> _biset;
};
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新