TensorFlow2 实现神经风格迁移,DIY数字油画定制照片_vgg19由16个碱基层和三个全连接层组成

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

content_image = scale_image(np.asarray(Image.open(‘7.jpg’)))
style_image = scale_image(np.asarray(Image.open(‘starry-night.jpg’)))


#### VGG预处理


  `Keras` 预训练模型期望输入图像的BGR范围为 `[0, 255]` 。因此,第一步是反转颜色通道,以将 `RGB` 转换为`BGR` 。 `VGG` 对不同的颜色通道使用不同的平均值,可以使用 `tf.keras.applications.vgg19.preprocess_input()` 进行预处理,在 `preprocess_input()` 内部,分别为B,G和R通道的像素值减去 `103.939` 、`116.779` 和 `123.68` 。  
   以下是前向计算代码,在对图像进行前向计算之前先对其进行预处理,然后再将其输入模型以返回内容特征。然后,我们提取内容特征并将其用作我们的目标:



def extract_features(image):
image = tf.keras.applications.vgg19。preprocess_input(image *255.)
content_ref = model(image)
return content_ref
content_image = tf.reverse(content_image, axis=[-1])
content_ref = extract_features(content_image)


  在代码中,由于图像已标准化为 `[0., 1.]`,因此我们需要通过将其乘以255将其恢复为 `[0.,255.]`。然后创建一个随机初始化的输入,该输入也将成为风格化的图像:



image = tf.Variable(tf.random.normal( shape=content_image.shape))


  接下来,我们将使用反向传播从内容特征中重建图像。


#### 重建内容


  在训练步骤中,我们将图像馈送到冻结的 `VGG` 中以提取内容特征,然后使用 
 
 
 
 
 
 L 
 
 
 2 
 
 
 
 
 L\_2 
 
 
 L2​损失针对目标内容特征进行度量,用于计算每个特征层的L2损失:



def calc_loss(y_true, y_pred):
loss = [tf.reduce_sum((x-y)**2) for x, y in zip(y_pred, y_true)]
return tf.reduce_mean(loss)


  使用 `tf.GradientTape()` 计算梯度。在正常的神经网络训练中,将梯度更新应用于可训练变量,即神经网络的权重。但是,在神经风格迁移中,将梯度应用于图像。之后,将图像值剪裁在 `[0., 1.]` 之间,如下所示:



for i in range(1,steps+1):
with tf.GradientTape() as tape:
content_features = self.extract_features(image)
loss = calc_loss(content_features, content_ref)
grad = tape.gradient(loss, image)
optimizer.apply_gradients([(grad, image)])
image.assign(tf.clip_by_value(image, 0., 1.))


  使用block1\_1重建图像,训练了2000步后,得到重构后的内容图像:


![重构后的内容图像](https://img-blog.csdnimg.cn/20210624132945203.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0xPVkVteTEzNDYxMQ==,size_16,color_FFFFFF,t_70#pic_center)


  使用block4\_1重建图像,训练了2000步后,得到重构后的内容图像:


![重构后的内容图像](https://img-blog.csdnimg.cn/2021062413083632.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0xPVkVteTEzNDYxMQ==,size_16,color_FFFFFF,t_70#pic_center)  
   可以看到使用层block4\_1时,开始丢失细节,例如树叶的形状。当我们使用block5\_1时,我们看到几乎所有细节都消失了,并充满了一些随机噪声:


![重构后的内容图像](https://img-blog.csdnimg.cn/20210624125305744.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0xPVkVteTEzNDYxMQ==,size_16,color_FFFFFF,t_70#pic_center)  
   如果我们仔细观察,树叶的结构和边缘仍然得到保留,并在其应有的位置。现在,我们已经提取了内容,提取内容特征后,下一步是提取样式特征。


#### 用Gram矩阵重建风格


  在内容重建中可以看出,特征图(尤其是前几层)既包含风格又包含内容。那么我们如何从图像中提取风格特征呢?方法是使用 `Gram` 矩阵,该矩阵可计算不同滤波器响应之间的相关性。假设卷积层1的激活形状为 `(H, W, C)` ,其中 `H` 和 `W` 是空间尺寸,`C` 是通道数,等于滤波器的数量,每个滤波器检测不同的图像特征。  
   当具有一些共同的特征(例如颜色和边缘)时,则认为它们具有相同的纹理。例如,如果我们将草地的图像输入到卷积层中,则检测垂直线和绿色的滤波器将在其特征图中产生更大的响应。因此,我们可以使用特征图之间的相关性来表示图像中的纹理。  
   要通过形状为 `(H, W, C)` 的激活来创建Gram矩阵,我们首先将其重塑为 `C` 个向量。每个向量都是大小为 `H×W` 的一维特征图。对 `C` 个向量执行点积运算,以获得对称的`C×C Gram` 矩阵。在 `TensorFlow` 中计算 `Gram` 矩阵的详细步骤如下:


1. 使用 `tf.squeeze()` 将批尺寸 `(1, H, W, C)` 修改为 `(H, W, C)` ;
2. 转置张量以将形状从 `(H, W, C)` 转换为 `(C, H, W)` ;
3. 将最后两个维度展平为 `(C, H×W)`;
4. 执行特征的点积以创建形状为 `(C, C)` 的 `Gram` 矩阵;
5. 通过将矩阵除以每个展平的特征图中的元素数 `(H×W)` 进行归一化。


计算 `Gram` 矩阵的代码如下:



def gram_matrix(x):
x = tf.transpose(tf.squeeze(x), (2,0,1));
x = tf.keras.backend.batch_flatten(x)
num_points = x.shape[-1]
gram = tf.linalg.matmul(x, tf.transpose(x))/num_points
return gram


  可以使用此函数为指定的样式层的每个 `VGG` 层获取 `Gram` 矩阵。然后,我们对来自目标图像和参考图像的 `Gram` 矩阵使用 
 
 
 
 
 
 L 
 
 
 2 
 
 
 
 
 L\_2 
 
 
 L2​损失。损失函数与内容重建相同。创建 `Gram` 矩阵列表的代码如下:



def extract_features(image):
image = tf.keras.applications.vgg19.preprocess_input(image *255.)
styles = self.model(image)
styles = [self.gram_matrix(s) for s in styles]
return styles


  以下图像是从不同VGG图层的风格特征中重构得到的:


![风格特征重构](https://img-blog.csdnimg.cn/20210624133149921.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0xPVkVteTEzNDYxMQ==,size_16,color_FFFFFF,t_70#pic_center)  
   在从block1\_1重建的风格图像中,内容信息完全消失,仅显示高频纹理细节。较高的层block3\_1,显示了一些卷曲的形状:


![风格特征重构](https://img-blog.csdnimg.cn/20210624133701530.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0xPVkVteTEzNDYxMQ==,size_16,color_FFFFFF,t_70#pic_center)  
   这些形状捕获了输入图像中风格的较高层次。 Gram矩阵的损失函数是平方误差之和而不是均方误差。因此,层次风格较高的层具有较高的固有权重。这允许传输更高级的风格表示形式,例如笔触。如果使用均方误差,则低层次的风格特征(例如纹理)将在视觉上更加突出,并且可能看起来像高频噪声。


### 实现神经风格转换


  现在,我们可以合并内容和风格重构中的代码,以执行神经样式转移。  
   我们首先创建一个模型,该模型提取两个特征块,一个用于内容,另一个用于样式。内容重建使用block5\_conv1层,从block1\_conv1到block5\_conv1的五层用于捕获来自不同层次结构的风格,如下所示:



vgg = tf.keras.applications.VGG19(include_top=False, weights=‘imagenet’)
default_content_layers = [‘block5_conv1’]
default_style_layers = [‘block1_conv1’,
‘block2_conv1’,
‘block3_conv1’,
‘block4_conv1’,
‘block5_conv1’]
content_layers = content_layers if content_layers else default_content_layers
style_layers = style_layers if style_layers else default_style_layers
self.content_outputs = [vgg.get_layer(x).output for x in content_layers]
self.style_outputs = [vgg.get_layer(x).output for x in style_layers]
self.model = Model(vgg.input, [self.content_outputs, self.style_outputs])


  在训练循环开始之前,我们从各自的图像中提取内容和风格特征以用作目标。虽然我们可以使用随机初始化的输入来进行内容和风格重建,但从内容图像开始进行训练会更快:



content_ref, _ = self.extract_features(content_image)

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

25)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值