网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
选自machinelearningmastery
作者:Jason Brownlee
本文转自机器之心(nearhuman2014)
奇异值分解(SVD)可能是最著名和使用最广泛的矩阵分解方法。所有矩阵都有一种 SVD 方法,这使得其比特征分解(eigendecomposition)等其它方法更加稳定。因此,这种方法在很多应用中都有应用,包括压缩、去噪、数据压缩。
在这份教程中,你将了解用于将矩阵分解成其组成元素的奇异值分解方法。
在完成本教程后,你将了解:
- 奇异值分解是什么以及涉及什么
- 如何计算 SVD 以及如何根据 SVD 元素重建矩形和方形矩阵
- 如何使用 SVD 计算伪逆和执行降维
那就开始吧!
教程概览
本教程分为 5 部分,依次为:
-
奇异值分解
-
计算奇异值分解
-
根据 SVD 重建矩阵
-
用于伪逆的 SVD
-
用于降维的 SVD
奇异值分解
奇异值分解(SVD)是一种用于将矩阵归约成其组成部分的矩阵分解方法,以使后面的某些矩阵计算更简单。
为了说明简单,我们将关注用于实数值矩阵的 SVD,而会忽略复数矩阵的情况。
其中 A 是我们希望分解的 n×m 的实矩阵,U 是一个 m×m 矩阵,Sigma(通常用大写的希腊字母 ∑表示)是一个 m×n 的对角矩阵,V^T 是一个 n×n 矩阵的转置,其中 T 是上标。奇异值分解是线性代数的一个亮点。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
目、大纲路线、讲解视频,并且后续会持续更新**