一文了解Midjourney 和 Stable Diffusion的区别

【Midjourney vs Stable Diffusion】视频讲解

AI软件哪家强?有人说Midjoureny (MJ), 有人说Stable Diffuion(SD), 他们到底有什么区别?应该选择哪款软件学习?今天带大家全面了解一下!文末可白嫖AI资料哦~

一.使用费用对比

Midjourney的收费为每月8-120美金不等,折算成RMB为60-880左右。

分为4档

Basic基础订阅(月付$10)

Standard标准订阅(月付$30)

Pro高级订阅(月付$60)

Mega顶级订阅(月付$120)

Basic基础订阅(年付$8/月)

Standard标准订阅(年付$24/月)

Pro高级订阅(年付$48/月)

Mega顶级订阅(年付$96/月)

订阅的区别在于快速出图的数量,价格越贵拥有更多的快速出图数量。从功能上看, Pro和 Mega拥有隐私模式和批量同时生成12组图的功能。

Stable Diffusion则是一款**完全开源免费的本地程序。**表面上看费用为0,但其实大有门道…

二.配置要求

虽然SD开源免费,但是需要用到本地算力。如果你的显卡不够好,你需要考虑更换, 甚至配一整台主机。

我们算笔账,假如说一台普通的主机2万元,折合成常用的MJ标准版30美金(¥210RMB),就等于20000/210 =【95个月MJ订阅】;如果换成标准版年付(24美金每月约等于¥168RMB),那就是20000/168 =119个月,折算成年份就相当于【10年MJ订阅】。

我们支付给MJ的费用其实就是买它的算力,MJ是后台算力,只需要有一个能上网的手机、笔记本、平板或者电脑即可。

而SD则需要一台高配置的电脑,并且建议是Nivida显卡,即使现在已经有了识别AMD显卡的功能,但是还是没有N卡快。所以大部分的AMD显卡玩家只能被迫使用CPU来渲染图片,N卡显存要求是至少8GB起,如果想要渲染视频或使用SDXL这类大模型则需要至少12GB起。

我个人建议,显卡性能并不是最重要的,最重要的还是显存,越高越好!3090 24GB虽然没有4080Super 16GB性能高,但是以使用SD为基础讨论性价比的话,我还是建议3090 24GB,因为你跑的速度再快,显存不足的话图片是生成不出来的。

SD支持Windows,Linux和Mac OS系统,Mac系统的芯片跑起来还是没有Windows N卡快,不过【Mac有显存内存共享的功能】,可以让显存扩充到128G,甚至到最新M4芯片发出后可以扩充到512G显存,目前来看,Mac虽然慢,但是爆显存的概率很低。如果未来在AI算力上有明显的提升可以和N卡持平…

三.开源和闭源

MJ是一个完全闭源的AI工具,没有独立的程序只能在Discord内使用。SD是一个完全开源的AI工具。

什么是开源闭源?

简单来讲,就是把自己开发程序用到的源代码公之于众,任何人都能获取、查看、修改这个程序就是开源,不公开的就是闭源。

那么开源对我们用户有什么影响呢?

影响非常大,这决定着你用到的功能、页面的设计、调用的模型等体验。

你可以使用SD训练AI模型,成为一个模型师;也可以创作一个脚本、插件等任何只要你想让页面出现的功能,放在程序上让所有人使用。还有专门的模型网站收录模型作品,这就是为什么SD能够获得许多人的青睐。

反过来看MJ,我们只能使用官方给到的模型,V5.2、V6.1等,功能和SD比没那么多。虽然模型选择有限,但真很强大。只要把风格提示词写好,就能生成你想要的风格。

四.控制性对比

在发布Sref 和Cref这两功能之前,MJ毫无控制可言。你想使用产品来生成一个AI海报,MJ还是无法在产品细节不变的情况下完成。而SD的控制网可以尽可能地还原产品本身,像是产品的结构、框架和姿势,虽然细节无法1:1还原,不过能通过训练产品为模型来增加可控性,这一点MJ就无法达到。尤其是人物,SD的还原细节还是非常高的。

五.生成出来的图片质量

关于这一点很多人有争议,但是我依然要说MJ的图片质量还是远远超于SD的!比如同样输入关键词cyberpunk city,我们来对比下:

“MJ生成”

“SD生成”

我们这里不讨论审美喜好,只看图片的精细度。

六.上手难易程度

好多人说SD比MJ难,其实都很简单。很多人看我的公开课都能学会,想进阶的同学我也会带着一起陪跑。因为实操很多问题我都踩过雷,基本上都可以一眼看出问题所在。

七.软件掌握时长

大家对掌握两款软件的时长会很好奇。就拿我的课程举例,只要你用心把25节MJ系统课程看完,每篇在10-20分钟左右,一天看5篇再配合着练习,一周时间就可以从基础到进阶到高阶,再到最后的商业案例掌握。

SD功能比较多,考虑到大家的宝贵时间, 特意做了课程筛选, 把没用的过时的功能都规避掉了, 最后精心准备了40多节课程(并持续更新中),每篇时长较长,总体下来一个月左右就可以掌握。

以上就是MJ和SD的主要区别,接下来我们聊聊大家很关注的版权问题!

*AI有版权吗?

MJ有明确讲到只要是订阅用户,生成出来的图片可以完全享有商业版权!

SD同理,只要模型作者在简介下说明允许商业,你就可以购买版权!

所以是MJ还是SD呢?

一直有人追问我,非要我给个具体答案。那我来谈谈个人看法,我觉得MJ更适合刚接触AI绘画的好奇者,写好关键词,MJ可以无中生有带给你非常非常多的灵感,出图质量和想象力依然是顶流,我甚至可以说它排名第一!

对于电商人员来说,SD的优势非常明显,可以在产品上做升华或是做差异化,那么!因为它可以在完全保留产品的基础上再给增加你想要的新元素!

一个是艺术家****(MJ)

一个是美工(SD)

最后,希望大家多运用AI让自己的生活充满阳光和色彩,多使用AI做些正能量的事情

请牢记!一定要遵纪守法!

AI绘画SD一键汉化安装包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

### MidJourneyStable Diffusion特性、性能及应用场景对比 #### 特性对比 MidJourneyStable Diffusion都是基于深度学习技术的人工智能工具,用于图像生成领域。然而两者之间存在显著区别。 - **架构设计** - MidJourney采用了一种独特的神经网络结构,专注于高质量艺术风格图片的创作过程优化[^1]。 - Stable Diffusion则构建于Diffusion Models之上,这是一种概率模型框架,能够逐步去除噪声从而合成逼真度极高的图像[^2]。 - **操作便捷性** - 对于用户而言,MidJourney提供了图形界面以及社区支持,使得即使是非技术人员也能轻松上手创建个性化作品。 - Stable Diffusion开源性质允许开发者深入定制化调整参数设置,适合具备一定编程技能的技术爱好者探索更多可能性。 #### 性能表现 - **生成速度** - 尽管具体数值取决于硬件配置等因素,通常情况下Stable Diffusion可以在本地环境中快速迭代实验并获得即时反馈;而MidJourney依赖云端服务器处理请求,响应时间可能稍长一些。 - **视觉质量** - 在某些特定场景下,比如超现实主义绘画或是概念图绘制方面,MidJourney往往展现出更为细腻的艺术效果。 - 反之当涉及到写实照片级别的渲染任务时,Stable Diffusion凭借其强大的去噪能力同样不落下风,并且可以根据需求灵活调节细节层次。 #### 应用案例分析 - **创意产业应用** - 鉴于MidJourney易于使用的特性出色的美学呈现力,广泛应用于插画师、设计师群体之中作为灵感激发器或辅助绘图工具。 - **科研教育用途** - 开源属性赋予了Stable Diffusion更高的透明度,在学术研究机构内部被用来教授机器学习原理课程或者开展前沿算法改进工作。 ```python import torch from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) prompt = "a photograph of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值