异常检测入门指南:揭开数据中隐藏的秘密
1.背景介绍
1.1 什么是异常检测?
异常检测(Anomaly Detection)是一种广泛应用于多个领域的技术,旨在从大量数据中识别出与众不同的"异常"数据点或模式。这些异常数据点可能代表着系统故障、欺诈行为、新兴趋势或其他重要信息。因此,异常检测在诸如金融欺诈检测、网络安全监控、制造业缺陷检测、医疗诊断等领域扮演着关键角色。
1.2 为什么异常检测很重要?
在现实世界中,异常往往隐藏在海量数据中,很容易被忽视。但这些异常数据可能暗示着系统存在问题或风险,需要及时发现和处理。一些典型的应用场景包括:
- 网络入侵检测:识别可疑的网络流量模式,防御黑客攻击。
- 信用卡欺诈检测:发现异常的交易记录,阻止金融欺诈行为。
- 制造业缺陷检测:及时发现产品缺陷,保证质量控制。
- 医疗诊断:从病人症状和体征数据中发现异常,协助诊断疾病。
因此,异常检测技术对于维护系统安全、保护利益、提高质量等方面都有重要意义。
2.核心概念与联系
2.1 异常检测的核心概念
- 正常数据(Normal Data): 符合预期模式或特征的数据,构成了系统或过程的正常运行状态。
- 异常数据(Anomaly): 与正