计算机视觉(Computer Vision)原理与代码实战案例讲解
1.背景介绍
计算机视觉(Computer Vision)是人工智能领域中一个重要的分支,旨在让计算机具备像人类一样理解和解释视觉信息的能力。随着深度学习和大数据技术的快速发展,计算机视觉在图像识别、物体检测、图像分割等方面取得了显著的进展,并在自动驾驶、医疗影像分析、安防监控等领域得到了广泛应用。
2.核心概念与联系
2.1 图像处理与计算机视觉
图像处理是计算机视觉的基础,主要关注图像的增强、复原、压缩等技术。计算机视觉则更进一步,关注从图像中提取有用的信息和理解图像内容。
2.2 机器学习与深度学习
机器学习是计算机视觉的核心技术,通过训练模型来识别和分类图像。深度学习,特别是卷积神经网络(CNN),在计算机视觉中表现出色,能够自动提取图像特征并进行分类。
2.3 主要任务
计算机视觉的主要任务包括图像分类、物体检测、图像分割、姿态估计等。每个任务都有其特定的算法和技术。