多模态大模型:技术原理与实战 GPT技术的发展历程
1.背景介绍
1.1 人工智能的发展历程
人工智能(AI)自20世纪50年代诞生以来,经历了多次起伏。从最初的符号主义到连接主义,再到如今的深度学习,AI技术不断演进。近年来,深度学习尤其是基于神经网络的模型在图像识别、自然语言处理等领域取得了显著的成果。
1.2 多模态大模型的兴起
多模态大模型是指能够处理和理解多种类型数据(如文本、图像、音频等)的模型。随着数据量的爆炸性增长和计算能力的提升,多模态大模型逐渐成为AI研究的热点。它们不仅能够在单一模态上表现出色,还能通过融合多种模态的信息,提供更为全面和准确的理解。
1.3 GPT技术的演变
生成式预训练模型(GPT)是由OpenAI提出的一种基于Transformer架构的语言模型。自GPT-1问世以来,GPT技术经历了多次迭代和改进,逐步发展成为如今的GPT-4。每一代GPT模型在参数规模、训练数据量和性能上都有显著提升。
2.核心概念与联系
2.1 多模态数据
多模态数据指的是来自不同来源和形式的数