多模态大模型:技术原理与实战 GPT技术的发展历程

多模态大模型:技术原理与实战 GPT技术的发展历程

1.背景介绍

1.1 人工智能的发展历程

人工智能(AI)自20世纪50年代诞生以来,经历了多次起伏。从最初的符号主义到连接主义,再到如今的深度学习,AI技术不断演进。近年来,深度学习尤其是基于神经网络的模型在图像识别、自然语言处理等领域取得了显著的成果。

1.2 多模态大模型的兴起

多模态大模型是指能够处理和理解多种类型数据(如文本、图像、音频等)的模型。随着数据量的爆炸性增长和计算能力的提升,多模态大模型逐渐成为AI研究的热点。它们不仅能够在单一模态上表现出色,还能通过融合多种模态的信息,提供更为全面和准确的理解。

1.3 GPT技术的演变

生成式预训练模型(GPT)是由OpenAI提出的一种基于Transformer架构的语言模型。自GPT-1问世以来,GPT技术经历了多次迭代和改进,逐步发展成为如今的GPT-4。每一代GPT模型在参数规模、训练数据量和性能上都有显著提升。

2.核心概念与联系

2.1 多模态数据

多模态数据指的是来自不同来源和形式的数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值