大语言模型原理与工程实践:RefinedWeb
1. 背景介绍
1.1 问题的由来
随着人工智能技术的快速发展,尤其是深度学习方法的普及,大语言模型(Large Language Models, LLMs)成为推动自然语言处理(NLP)领域突破的关键力量。这类模型通常基于大规模的文本数据集训练而成,能够生成连贯、上下文相关的文本,涵盖多种语言任务,从简单的文本生成到复杂的对话系统和文本理解。它们的涌现标志着自然语言处理技术进入了一个全新的阶段,为人类生活和工作带来便利的同时,也引发了一系列技术挑战和道德议题。
1.2 研究现状
目前,大语言模型的研究主要集中在提升模型性能、扩展应用范围以及解决伦理和隐私问题上。模型架构不断进化,从早期的循环神经网络(RNN)到现今的多层 Transformer 结构,再到引入注意力机制和多模态信息融合,大语言模型的能力持续增强。同时,社区也在探索如何更有效地利用现有资源,通过数据增强、模型微调等手段提升模型性能,以及如何在保持模型性能的同时,减轻对计算资源的依赖。
1.3 研究意义
大语言模型的发展对社会、经济以及个人生活都有着深