大语言模型原理基础与前沿 轻量级适配

大语言模型原理基础与前沿 轻量级适配

关键词:

  • 大语言模型
  • 深度学习
  • 计算机科学
  • 模型轻量化
  • 自然语言处理

1. 背景介绍

1.1 问题的由来

随着深度学习技术的发展,大型语言模型(Large Language Models, LLMs)成为了自然语言处理(Natural Language Processing, NLP)领域的热门话题。这些模型通过从大量文本数据中学习,掌握了一系列的语言技能,包括但不限于文本生成、回答问题、翻译、代码编写等。然而,大型语言模型通常具有庞大的参数量,这在部署到实际应用时会面临计算成本高、内存占用大等挑战。

1.2 研究现状

当前,研究人员正在探索如何在保持模型性能的同时,减轻大型语言模型的负载,以便在更广泛的设备上部署。这种努力被称为“模型轻量化”,包括模型压缩、剪枝、量化以及架构优化等技术。此外,多模态学习和知识蒸馏也是提升模型性能并降低复杂度的策略之一。

1.3 研究意义

模型轻量化对于推动大语言模型在边缘计算、移动设备以及云服务中的广泛应用具有重要意义。它不仅能够降低运行成本,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值