大语言模型原理基础与前沿 轻量级适配
关键词:
- 大语言模型
- 深度学习
- 计算机科学
- 模型轻量化
- 自然语言处理
1. 背景介绍
1.1 问题的由来
随着深度学习技术的发展,大型语言模型(Large Language Models, LLMs)成为了自然语言处理(Natural Language Processing, NLP)领域的热门话题。这些模型通过从大量文本数据中学习,掌握了一系列的语言技能,包括但不限于文本生成、回答问题、翻译、代码编写等。然而,大型语言模型通常具有庞大的参数量,这在部署到实际应用时会面临计算成本高、内存占用大等挑战。
1.2 研究现状
当前,研究人员正在探索如何在保持模型性能的同时,减轻大型语言模型的负载,以便在更广泛的设备上部署。这种努力被称为“模型轻量化”,包括模型压缩、剪枝、量化以及架构优化等技术。此外,多模态学习和知识蒸馏也是提升模型性能并降低复杂度的策略之一。
1.3 研究意义
模型轻量化对于推动大语言模型在边缘计算、移动设备以及云服务中的广泛应用具有重要意义。它不仅能够降低运行成本,