1. 背景介绍
1.1 大规模语言模型的兴起
近年来,随着深度学习技术的飞速发展,大规模语言模型(LLM)在自然语言处理领域取得了显著的成果。LLM通常包含数十亿甚至数千亿个参数,能够在海量文本数据上进行训练,从而具备强大的语言理解和生成能力。GPT-3、BERT、LaMDA等模型的出现,标志着LLM进入了新的发展阶段,并在机器翻译、文本摘要、问答系统、代码生成等领域展现出巨大的应用潜力。
1.2 推理优化挑战
然而,LLM的强大能力也带来了巨大的计算成本。推理过程需要大量的计算资源和时间,这限制了LLM在实际应用中的部署和推广。为了解决这个问题,研究人员致力于开发各种推理优化技术,旨在降低LLM的推理延迟和计算成本,同时保持模型的性能。
1.3 本文目标
本文将深入探讨LLM推理优化技术,从理论到实践,全面介绍核心概念、算法原理、数学模型、代码实例以及实际应用场景。此外,本文还将推荐一些常用的工具和资源,并展望LLM推理优化的未来发展趋势和挑战。
2. 核心概念与联系
2.1 推理延迟与吞吐量
推理延迟是指模型处理一个输入并生成输出所需的时间,通常以毫秒或秒为单位。吞吐量是指