Gibbs采样原理与代码实战案例讲解

1. 背景介绍

1.1 蒙特卡洛方法

蒙特卡洛方法是一种随机模拟方法,广泛应用于科学和工程领域。其基本思想是通过随机抽样来估计问题的解。例如,要计算一个不规则图形的面积,可以将图形放在一个正方形内,然后随机生成大量点,落在图形内的点的比例就可以用来估计图形的面积。

1.2 马尔可夫链蒙特卡洛方法

马尔可夫链蒙特卡洛方法 (MCMC) 是一种特殊的蒙特卡洛方法,它利用马尔可夫链来生成样本。马尔可夫链是一个随机过程,其中每个状态的概率分布只取决于前一个状态。MCMC方法通过构建一个马尔可夫链,使其平稳分布等于目标分布,从而实现从目标分布中抽取样本。

1.3 Gibbs采样

Gibbs采样是一种MCMC方法,它适用于多维分布的抽样。其基本思想是每次只更新一个变量,而保持其他变量不变,通过迭代更新所有变量,最终得到符合目标分布的样本。

2. 核心概念与联系

2.1 条件概率

条件概率是指在已知某些事件发生的条件下,另一个事件发生的概率。例如,假设事件A是“今天下雨”,事件B是“我带伞”,则P(B|A)表示在已知今天下雨的情况下,我带伞的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值