遗传算法(Genetic Algorithms) - 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
遗传算法(Genetic Algorithms,GA)是一种模拟自然选择和遗传学原理的搜索启发式算法。它起源于20世纪70年代,由美国计算机科学家霍兰德(John Holland)首次提出。遗传算法在优化、搜索、机器学习等领域有着广泛的应用,尤其在处理复杂、大规模、多模态优化问题时,展现出独特的优势。
1.2 研究现状
随着计算机科学和人工智能技术的不断发展,遗传算法的研究和应用取得了显著的成果。目前,遗传算法已经成为了求解复杂优化问题的重要工具之一,并在多个领域取得了突破性进展。例如,在工程优化、机器学习、图像处理、生物信息学等领域,遗传算法都发挥着重要作用。
1.3 研究意义
遗传算法作为一种高效、鲁棒的搜索算法,具有以下研究意义:
- 求解复杂优化问题:遗传算法能够处理大规模、多模态的优化问题,为解决现实世界中的复