大语言模型、有监督微调、数据选择、模型性能、工程实践
1. 背景介绍
近年来,大语言模型(Large Language Models,LLMs)在自然语言处理领域取得了显著进展,展现出强大的文本生成、翻译、问答和代码生成能力。这些模型通常基于Transformer架构,拥有数十亿甚至千亿参数,需要海量数据进行训练。然而,训练大型语言模型的成本高昂,且需要大量的计算资源和时间。
为了降低训练成本和提高模型效率,研究者们提出了有监督微调(Supervised Fine-Tuning)技术。通过在特定任务上使用少量标注数据对预训练模型进行微调,可以显著提升模型在目标任务上的性能,同时减少训练时间和资源消耗。
然而,数据选择在有监督微调过程中至关重要。高质量、与目标任务相关的训练数据可以显著提升模型性能,而噪声数据或不相关的训练数据则可能导致模型过拟合或性能下降。因此,如何选择合适的训练数据是LLM工程实践中一个关键问题。
2. 核心概念与联系
2.1 预训练模型
预训练模型是指在大量通用文本数据上进行训练的语言模型,已经具备了基本的语言理解和生成能力。常见的预训练模型包括BERT、GPT、T5等。