计算:第二部分 计算的数学基础 第 4 章 数学的基础 连续统假设

连续统假设, 数学基础, 计算理论, 离散数学, 概率论, 微积分, 数值分析

1. 背景介绍

在计算机科学的领域中,我们经常会遇到离散和连续两种不同的数学模型。离散数学主要研究离散的、可数的物体,例如整数、集合和图论。而连续数学则研究连续的、不可数的物体,例如实数、函数和微积分。

在计算机科学的早期发展阶段,离散数学占据了主导地位,因为计算机本身处理的是离散的数据。然而,随着计算机技术的进步,我们开始处理越来越多的连续数据,例如图像、音频和视频。因此,对连续数学的理解变得越来越重要。

本节将重点介绍连续统假设,它是一种重要的数学基础,为理解和处理连续数据提供了理论框架。

2. 核心概念与联系

连续统假设的核心思想是,任何连续的量都可以被视为一个无限的离散集合的极限。换句话说,我们可以通过无限细分的步骤,将一个连续的量逼近到一个离散的集合。

Mermaid 流程图:

graph LR
    A[连续量] --> B{无限细分}
    B --> C{离散集合}
    C --> D{极限}

核心概念:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值