神经架构搜索,NAS,搜索空间设计,深度学习,自动机器学习
1. 背景介绍
深度学习近年来取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。然而,深度学习模型的性能很大程度上依赖于人工设计的网络架构。手工设计网络架构是一个耗时费力且需要专业知识的过程,并且难以保证找到最优的架构。
神经架构搜索 (NAS) 应运而生,它利用机器学习算法自动搜索最优的网络架构,从而解放人类的设计者,提高模型性能。NAS 算法通常通过对搜索空间中的候选架构进行评估,并根据评估结果更新搜索策略,最终找到最优的架构。
2. 核心概念与联系
2.1 核心概念
- 搜索空间: NAS 算法的核心是搜索空间,它定义了所有可能的网络架构。搜索空间的设计直接影响 NAS 算法的效率和性能。
- 搜索策略: 搜索策略决定了 NAS 算法如何探索搜索空间。常见的搜索策略包括梯度下降、强化学习和进化算法等。
- 评估指标: 评估指标用于衡量候选架构的性能,例如准确率、损失函数值等。
2.2 架构图